# Shufflenet v2: Practical guidelines for efficient cnn architecture design ## Introduction ```latex @inproceedings{ma2018shufflenet, title={Shufflenet v2: Practical guidelines for efficient cnn architecture design}, author={Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian}, booktitle={Proceedings of the European conference on computer vision (ECCV)}, pages={116--131}, year={2018} } ``` ## Results and models ### ImageNet | Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download | |:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:| | ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth) | [log](https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200804-8860eec9.log.json) |