import argparse from mmcv import Config from mmcv.cnn.utils import get_model_complexity_info from mmcls.models import build_classifier def parse_args(): parser = argparse.ArgumentParser(description='Get model flops and params') parser.add_argument('config', help='config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[224, 224], help='input image size') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') cfg = Config.fromfile(args.config) model = build_classifier(cfg.model) model.eval() if hasattr(model, 'extract_feat'): model.forward = model.extract_feat else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()