QINGTIAN 74743ef588
[Feature] [CodeCamp #68] Add EfficientnetV2 Backbone. (#1253)
* add efficientnet_v2.py

* add efficientnet_v2 in __init__.py

* add efficientnet_v2_s base config file

* add efficientnet_v2 config file

* add efficientnet_v2 config file

* update tuple output

* update config file

* update model file

* update model file

* update model file

* update config file

* update model file

* update config file

* update model file

* update model file

* update model file

* update model file

* update model file

* update config file

* update config file

* update model file

* update model file

* update model file

* update model file

* update model config file

* Update efficientnet_v2.py

* add config file and modify arch

* add config file and modify arch

* add the file about convert_pth from timm to mmcls

* update efficientnetv2 model file with mmcls style

* add the file about convert_pth from timm to mmcls

* add the file about convert_pth from timm to mmcls

* update convert file

* update model file

* update convert file

* update model file

* update model file

* update model file

* add metefile and README

* Update tools/model_converters/efficientnetv2-timm_to_mmcls.py

Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>

* update model file and convert file

* update model file and convert file

* update model file and convert file

* update model file and convert file

* update model file

* update model file

* update model file

* update config file and README file

* update metafile

* Update efficientnetv2_to_mmcls.py

* update model-index.yml

* update metafile.yml

* update b0 and s train pipeline

* update b0 and s train pipeline

* update b0 and s train pipeline

* add test_efficientnet_v2

* update test_efficientnet_v2

* update model file docs

* update test_efficientnet_v2

* update test_efficientnet_v2

* add efficientnet_v2.py

* add efficientnet_v2 in __init__.py

* add efficientnet_v2_s base config file

* add efficientnet_v2 config file

* add efficientnet_v2 config file

* update tuple output

* update config file

* update model file

* update model file

* update model file

* update model file

* update config file

* update config file

* update model file

* update model file

* update model file

* update model file

* update model file

* update config file

* update config file

* update model file

* update model file

* update model file

* update model file

* update model config file

* Update efficientnet_v2.py

* add config file and modify arch

* add config file and modify arch

* add the file about convert_pth from timm to mmcls

* update efficientnetv2 model file with mmcls style

* add the file about convert_pth from timm to mmcls

* add the file about convert_pth from timm to mmcls

* update convert file

* update model file

* update convert file

* update model file

* update model file

* update model file

* add metefile and README

* Update tools/model_converters/efficientnetv2-timm_to_mmcls.py

Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>

* update model file and convert file

* update model file and convert file

* update model file and convert file

* update model file and convert file

* update model file

* update model file

* update model file

* update config file and README file

* update metafile

* Update efficientnetv2_to_mmcls.py

* update model-index.yml

* update metafile.yml

* update b0 and s train pipeline

* update b0 and s train pipeline

* update b0 and s train pipeline

* add test_efficientnet_v2

* update test_efficientnet_v2

* update model file docs

* update test_efficientnet_v2

* update test_efficientnet_v2

* pass pre-commit hook

* refactor efficientnetv2

* refactor efficientnetv2

* update readme, metafile and weight links

* update model-index.yml

* fix lint

* fix typo

* Update efficientnetv2-b1_8xb32_in1k.py

* Update efficientnetv2-b2_8xb32_in1k.py

* Update efficientnetv2-b3_8xb32_in1k.py

* update two moduals and model file

* update modual file

* update accuracys

* update accuracys

* update metafile

* fix build docs

* update links

* update README.md

Co-authored-by: qingtian <459291290@qq.com>
Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
2022-12-30 15:18:39 +08:00

151 lines
5.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import EfficientNetV2
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_efficientnet_v2_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = EfficientNetV2()
model.init_weights(pretrained=0)
with pytest.raises(AssertionError):
# arch must in arc_settings
EfficientNetV2(arch='others')
with pytest.raises(ValueError):
# frozen_stages must less than 8
EfficientNetV2(arch='b1', frozen_stages=12)
# Test EfficientNetV2
model = EfficientNetV2()
model.init_weights()
model.train()
x = torch.rand((1, 3, 224, 224))
model(x)
# Test EfficientNetV2 with first stage frozen
frozen_stages = 7
model = EfficientNetV2(arch='b0', frozen_stages=frozen_stages)
model.init_weights()
model.train()
for i in range(frozen_stages):
layer = model.layers[i]
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test EfficientNetV2 with norm eval
model = EfficientNetV2(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test EfficientNetV2 forward with 'b0' arch
out_channels = [32, 16, 32, 48, 96, 112, 192, 1280]
model = EfficientNetV2(arch='b0', out_indices=(0, 1, 2, 3, 4, 5, 6, 7))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, out_channels[0], 112, 112])
assert feat[1].shape == torch.Size([1, out_channels[1], 112, 112])
assert feat[2].shape == torch.Size([1, out_channels[2], 56, 56])
assert feat[3].shape == torch.Size([1, out_channels[3], 28, 28])
assert feat[4].shape == torch.Size([1, out_channels[4], 14, 14])
assert feat[5].shape == torch.Size([1, out_channels[5], 14, 14])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
assert feat[6].shape == torch.Size([1, out_channels[6], 7, 7])
# Test EfficientNetV2 forward with 'b0' arch and GroupNorm
out_channels = [32, 16, 32, 48, 96, 112, 192, 1280]
model = EfficientNetV2(
arch='b0',
out_indices=(0, 1, 2, 3, 4, 5, 6, 7),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
# Test EfficientNetV2 forward with 'm' arch
out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280]
model = EfficientNetV2(arch='m', out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 9
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2])
# Test EfficientNetV2 forward with 'm' arch and GroupNorm
out_channels = [24, 24, 48, 80, 160, 176, 304, 512, 1280]
model = EfficientNetV2(
arch='m',
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8),
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 9
assert feat[0].shape == torch.Size([1, out_channels[0], 32, 32])
assert feat[1].shape == torch.Size([1, out_channels[1], 32, 32])
assert feat[2].shape == torch.Size([1, out_channels[2], 16, 16])
assert feat[3].shape == torch.Size([1, out_channels[3], 8, 8])
assert feat[4].shape == torch.Size([1, out_channels[4], 4, 4])
assert feat[5].shape == torch.Size([1, out_channels[5], 4, 4])
assert feat[6].shape == torch.Size([1, out_channels[6], 2, 2])
assert feat[7].shape == torch.Size([1, out_channels[7], 2, 2])
assert feat[8].shape == torch.Size([1, out_channels[8], 2, 2])