mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* Add swin transformer archs S, B and L. * Add SwinTransformer configs * Add train config files of swin. * Align init method with original code * Use nn.Unfold to merge patch * Change all ConfigDict to dict * Add init_cfg for all subclasses of BaseModule. * Use mmcv version init function * Add Swin README * Use safer cfg copy method * Improve docstring and variable name. * Fix some difference in randaug Fix BGR bug, align scheduler config. Fix label smoothing parameter difference. * Fix missing droppath in attn * Fix bug of relative posititon table if window width is not equal to height. * Make `PatchMerging` more general, support kernel, stride, padding and dilation. * Rename `residual` to `identity` in attention and FFN. * Add `auto_pad` option to auto pad feature map * Improve docstring. * Fix bug in ShiftWMSA padding. * Remove unused `key` and `value` in ShiftWMSA * Move `PatchMerging` into utils and use common `PatchEmbed`. * Use latest `LinearClsHead`, train augments and label smooth settings. And remove original `SwinLinearClsHead`. * Mark some configs as "Evalution Only". * Remove useless comment in config * 1. Move ShiftWindowMSA and WindowMSA to `utils/attention.py` 2. Add docstrings of each module. 3. Fix some variables' names. 4. Other small improvement. * Add unit tests of swin-transformer and patchmerging. * Fix some bugs in unit tests. * Fix bug of rel_position_index if window is not square. * Make WindowMSA implicit, and add unit tests. * Add metafile.yml, update readme and model_zoo.
16 KiB
16 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | model | log | |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | model | log | |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | model | log | |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | model | log | |
ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 84.20 | 97.18 | config | model | log |
ViT-B/32* | 88.3 | 8.56 | 81.73 | 96.13 | config | model | log |
ViT-L/16* | 304.72 | 116.68 | 85.08 | 97.38 | config | model | log |
ViT-L/32* | 306.63 | 29.66 | 81.52 | 96.06 | config | model | log |
Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | config | model | log |
Swin-Transformer small | 49.61 | 8.52 | 83.02 | 96.29 | config | model | log |
Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | config | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | config | |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | config | |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | config | |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | config |