mmclassification/mmcls/models/heads/conformer_head.py

133 lines
4.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcls.registry import MODELS
from .cls_head import ClsHead
@MODELS.register_module()
class ConformerHead(ClsHead):
"""Linear classifier head.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
init_cfg (dict | optional): The extra init config of layers.
Defaults to use ``dict(type='Normal', layer='Linear', std=0.01)``.
"""
def __init__(
self,
num_classes,
in_channels, # [conv_dim, trans_dim]
init_cfg=dict(type='Normal', layer='Linear', std=0.01),
*args,
**kwargs):
super(ConformerHead, self).__init__(init_cfg=None, *args, **kwargs)
self.in_channels = in_channels
self.num_classes = num_classes
self.init_cfg = init_cfg
if self.num_classes <= 0:
raise ValueError(
f'num_classes={num_classes} must be a positive integer')
self.conv_cls_head = nn.Linear(self.in_channels[0], num_classes)
self.trans_cls_head = nn.Linear(self.in_channels[1], num_classes)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def init_weights(self):
super(ConformerHead, self).init_weights()
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress default init if use pretrained model.
return
else:
self.apply(self._init_weights)
def pre_logits(self, x):
if isinstance(x, tuple):
x = x[-1]
return x
def simple_test(self, x, softmax=True, post_process=True):
"""Inference without augmentation.
Args:
x (tuple[tuple[tensor, tensor]]): The input features.
Multi-stage inputs are acceptable but only the last stage will
be used to classify. Every item should be a tuple which
includes convluation features and transformer features. The
shape of them should be ``(num_samples, in_channels[0])`` and
``(num_samples, in_channels[1])``.
softmax (bool): Whether to softmax the classification score.
post_process (bool): Whether to do post processing the
inference results. It will convert the output to a list.
Returns:
Tensor | list: The inference results.
- If no post processing, the output is a tensor with shape
``(num_samples, num_classes)``.
- If post processing, the output is a multi-dimentional list of
float and the dimensions are ``(num_samples, num_classes)``.
"""
x = self.pre_logits(x)
# There are two outputs in the Conformer model
assert len(x) == 2
conv_cls_score = self.conv_cls_head(x[0])
tran_cls_score = self.trans_cls_head(x[1])
if softmax:
cls_score = conv_cls_score + tran_cls_score
pred = (
F.softmax(cls_score, dim=1) if cls_score is not None else None)
if post_process:
pred = self.post_process(pred)
else:
pred = [conv_cls_score, tran_cls_score]
if post_process:
pred = list(map(self.post_process, pred))
return pred
def forward_train(self, x, gt_label):
x = self.pre_logits(x)
assert isinstance(x, list) and len(x) == 2, \
'There should be two outputs in the Conformer model'
conv_cls_score = self.conv_cls_head(x[0])
tran_cls_score = self.trans_cls_head(x[1])
losses = self.loss([conv_cls_score, tran_cls_score], gt_label)
return losses
def loss(self, cls_score, gt_label):
num_samples = len(cls_score[0])
losses = dict()
# compute loss
loss = sum([
self.compute_loss(score, gt_label, avg_factor=num_samples) /
len(cls_score) for score in cls_score
])
if self.cal_acc:
# compute accuracy
acc = self.compute_accuracy(cls_score[0] + cls_score[1], gt_label)
assert len(acc) == len(self.topk)
losses['accuracy'] = {
f'top-{k}': a
for k, a in zip(self.topk, acc)
}
losses['loss'] = loss
return losses