Yixiao Fang 08dc8c75d3
[Refactor] Add selfsup algorithms. (#1389)
* remove basehead

* add moco series

* add byol simclr simsiam

* add ut

* update configs

* add simsiam hook

* add and refactor beit

* update ut

* add cae

* update extract_feat

* refactor cae

* add mae

* refactor data preprocessor

* update heads

* add maskfeat

* add milan

* add simmim

* add mixmim

* fix lint

* fix ut

* fix lint

* add eva

* add densecl

* add barlowtwins

* add swav

* fix lint

* update readtherdocs rst

* update docs

* update

* Decrease UT memory usage

* Fix docstring

* update DALLEEncoder

* Update model docs

* refactor dalle encoder

* update docstring

* fix ut

* fix config error

* add val_cfg and test_cfg

* refactor clip generator

* fix lint

* pass check

* fix ut

* add lars

* update type of BEiT in configs

* Use MMEngine style momentum in EMA.

* apply mmpretrain solarize

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-03-06 16:53:15 +08:00

69 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmengine.utils import digit_version
from mmpretrain.models import MaskFeat, MaskFeatViT
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_maskfeat_vit():
maskfeat_backbone = MaskFeatViT()
maskfeat_backbone.init_weights()
fake_inputs = torch.randn((2, 3, 224, 224))
fake_mask = torch.randn((2, 14, 14)).flatten(1).bool()
# test with mask
fake_outputs = maskfeat_backbone(fake_inputs, fake_mask)
assert list(fake_outputs.shape) == [2, 197, 768]
# test without mask
fake_outputs = maskfeat_backbone(fake_inputs, None)
assert len(fake_outputs[0]) == 2
assert fake_outputs[0][0].shape == torch.Size([2, 768, 14, 14])
assert fake_outputs[0][1].shape == torch.Size([2, 768])
@pytest.mark.skipif(
digit_version(torch.__version__) < digit_version('1.7.0'),
reason='torch version')
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_maskfeat():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
backbone = dict(type='MaskFeatViT', arch='b', patch_size=16)
neck = dict(
type='LinearNeck', in_channels=768, out_channels=108, gap_dim=0)
head = dict(
type='MIMHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
target_generator = dict(
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16)
alg = MaskFeat(
backbone=backbone,
neck=neck,
head=head,
target_generator=target_generator,
data_preprocessor=data_preprocessor)
# test forward_train
fake_data_sample = DataSample()
fake_mask = torch.rand((14, 14)).bool()
fake_data_sample.set_mask(fake_mask)
fake_data = {
'inputs': torch.randn((1, 3, 224, 224)),
'data_samples': [fake_data_sample]
}
fake_input = alg.data_preprocessor(fake_data)
fake_outputs = alg(**fake_input, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)