mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* add itp timm * minor update * minor update * minor update * add rep aug, minor update on configs * minor update * add target threshold * add decaymulti * minor update * minor update * add lbl smooth * update lr * reorganize config files and code * minor bugfixes * remove unused parts and minor fixes on cfg * critical bugfix, add test and cfg update * refactor code * update doc string * remove duplicate code * refactor drop path in resnet * rename * Modify configs and add README&metafile * Update metafile Co-authored-by: mzr1996 <mzr1996@163.com>
33 KiB
33 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
RepVGG-A0* | 9.11(train) | 8.31 (deploy) | 1.52 (train) | 1.36 (deploy) | 72.41 | 90.50 | config (train) | config (deploy) | model |
RepVGG-A1* | 14.09 (train) | 12.79 (deploy) | 2.64 (train) | 2.37 (deploy) | 74.47 | 91.85 | config (train) | config (deploy) | model |
RepVGG-A2* | 28.21 (train) | 25.5 (deploy) | 5.7 (train) | 5.12 (deploy) | 76.48 | 93.01 | config (train) | config (deploy) | model |
RepVGG-B0* | 15.82 (train) | 14.34 (deploy) | 3.42 (train) | 3.06 (deploy) | 75.14 | 92.42 | config (train) | config (deploy) | model |
RepVGG-B1* | 57.42 (train) | 51.83 (deploy) | 13.16 (train) | 11.82 (deploy) | 78.37 | 94.11 | config (train) | config (deploy) | model |
RepVGG-B1g2* | 45.78 (train) | 41.36 (deploy) | 9.82 (train) | 8.82 (deploy) | 77.79 | 93.88 | config (train) | config (deploy) | model |
RepVGG-B1g4* | 39.97 (train) | 36.13 (deploy) | 8.15 (train) | 7.32 (deploy) | 77.58 | 93.84 | config (train) | config (deploy) | model |
RepVGG-B2* | 89.02 (train) | 80.32 (deploy) | 20.46 (train) | 18.39 (deploy) | 78.78 | 94.42 | config (train) | config (deploy) | model |
RepVGG-B2g4* | 61.76 (train) | 55.78 (deploy) | 12.63 (train) | 11.34 (deploy) | 79.38 | 94.68 | config (train) | config (deploy) | model |
RepVGG-B3* | 123.09 (train) | 110.96 (deploy) | 29.17 (train) | 26.22 (deploy) | 80.52 | 95.26 | config (train) | config (deploy) | model |
RepVGG-B3g4* | 83.83 (train) | 75.63 (deploy) | 17.9 (train) | 16.08 (deploy) | 80.22 | 95.10 | config (train) | config (deploy) | model |
RepVGG-D2se* | 133.33 (train) | 120.39 (deploy) | 36.56 (train) | 32.85 (deploy) | 81.81 | 95.94 | config (train) | config (deploy) | model |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 (rsb-a1) | 25.56 | 4.12 | 80.12 | 94.78 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
Res2Net-50-14w-8s* | 25.06 | 4.22 | 78.14 | 93.85 | config | model |
Res2Net-50-26w-8s* | 48.40 | 8.39 | 79.20 | 94.36 | config | model |
Res2Net-101-26w-4s* | 45.21 | 8.12 | 79.19 | 94.44 | config | model |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | config | model |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | config | model |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | config | model |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | config | model |
ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
RegNetX-400MF | 5.16 | 0.41 | 72.56 | 90.78 | config | model | log |
RegNetX-800MF | 7.26 | 0.81 | 74.76 | 92.32 | config | model | log |
RegNetX-1.6GF | 9.19 | 1.63 | 76.84 | 93.31 | config | model | log |
RegNetX-3.2GF | 15.3 | 3.21 | 78.09 | 94.08 | config | model | log |
RegNetX-4.0GF | 22.12 | 4.0 | 78.60 | 94.17 | config | model | log |
RegNetX-6.4GF | 26.21 | 6.51 | 79.38 | 94.65 | config | model | log |
RegNetX-8.0GF | 39.57 | 8.03 | 79.12 | 94.51 | config | model | log |
RegNetX-12GF | 46.11 | 12.15 | 79.67 | 95.03 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 85.43 | 97.77 | config | model |
ViT-B/32* | 88.3 | 8.56 | 84.01 | 97.08 | config | model |
ViT-L/16* | 304.72 | 116.68 | 85.63 | 97.63 | config | model |
Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | config | model | log |
Swin-Transformer small | 49.61 | 8.52 | 83.02 | 96.29 | config | model | log |
Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | config | model | log |
Transformer in Transformer small* | 23.76 | 3.36 | 81.52 | 95.73 | config | model |
T2T-ViT_t-14 | 21.47 | 4.34 | 81.83 | 95.84 | config | model | log |
T2T-ViT_t-19 | 39.08 | 7.80 | 82.63 | 96.18 | config | model | log |
T2T-ViT_t-24 | 64.00 | 12.69 | 82.71 | 96.09 | config | model | log |
Mixer-B/16* | 59.88 | 12.61 | 76.68 | 92.25 | config | model |
Mixer-L/16* | 208.2 | 44.57 | 72.34 | 88.02 | config | model |
DeiT-tiny* | 5.72 | 1.08 | 72.13 | 91.13 | config | model |
DeiT-tiny distilled* | 5.72 | 1.08 | 74.51 | 91.90 | config | model |
DeiT-small* | 22.05 | 4.24 | 79.83 | 94.95 | config | model |
DeiT-small distilled* | 22.05 | 4.24 | 81.17 | 95.40 | config | model |
DeiT-base* | 86.57 | 16.86 | 81.79 | 95.59 | config | model |
DeiT-base distilled* | 86.57 | 16.86 | 83.33 | 96.49 | config | model |
DeiT-base 384px* | 86.86 | 49.37 | 83.04 | 96.31 | config | model |
DeiT-base distilled 384px* | 86.86 | 49.37 | 85.55 | 97.35 | config | model |
Conformer-tiny-p16* | 23.52 | 4.90 | 81.31 | 95.60 | config | model |
Conformer-small-p32* | 38.85 | 7.09 | 81.96 | 96.02 | config | model |
Conformer-small-p16* | 37.67 | 10.31 | 83.32 | 96.46 | config | model |
Conformer-base-p16* | 83.29 | 22.89 | 83.82 | 96.59 | config | model |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | config | |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | config | |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | config | |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | config |