mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* Add channel argments to mae_head When trying iTPN pretrain, it only supports images with 3 channels. One of the restrictions is from MAEHead. * Transfer other argments from iTPNHiViT to HiViT The HiViT supports specifying channels, but the iTPNHiViT class can't pass channel argments to it. This is one of the reasons that iTPNHiViT implementation only support images with 3 channels. * Update itpn.py Fix hint problem
360 lines
13 KiB
Python
360 lines
13 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import math
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine.model.weight_init import trunc_normal_
|
|
|
|
from mmpretrain.models.backbones.hivit import BlockWithRPE, HiViT, PatchMerge
|
|
from mmpretrain.registry import MODELS
|
|
from mmpretrain.structures import DataSample
|
|
from ..utils import build_2d_sincos_position_embedding
|
|
from .base import BaseSelfSupervisor
|
|
|
|
|
|
@MODELS.register_module()
|
|
class iTPNHiViT(HiViT):
|
|
"""HiViT for iTPN pre-training.
|
|
|
|
Args:
|
|
img_size (int | tuple): Input image size. Defaults to 224.
|
|
patch_size (int | tuple): The patch size. Defaults to 16.
|
|
inner_patches (int): Inner patch. Defaults to 4.
|
|
stem_mlp_ratio (int): Ratio of MLP hidden dim to embedding dim
|
|
in the first two stages. Defaults to 3.
|
|
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim in
|
|
the last stage. Defaults to 4.
|
|
qkv_bias (bool): Enable bias for qkv projections if True.
|
|
qk_scale (float): The number of divider after q@k. Default to None.
|
|
drop_rate (float): Probability of an element to be zeroed.
|
|
Defaults to 0.
|
|
attn_drop_rate (float): The drop out rate for attention output weights.
|
|
Defaults to 0.
|
|
drop_path_rate (float): stochastic depth rate. Defaults to 0.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Defaults to ``dict(type='LN')``.
|
|
ape (bool): If True, add absolute position embedding to
|
|
the patch embedding.
|
|
rpe (bool): If True, add relative position embedding to
|
|
the patch embedding.
|
|
layer_scale_init_value (float): Layer-scale init values. Defaults to 0.
|
|
mask_ratio (bool): The ratio of total number of patches to be masked.
|
|
Defaults to 0.75.
|
|
reconstruction_type (str): The reconstruction of self-supervised
|
|
learning. Defaults to 'pixel'.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
arch='base',
|
|
img_size: int = 224,
|
|
patch_size: int = 16,
|
|
inner_patches: int = 4,
|
|
stem_mlp_ratio: int = 3.,
|
|
mlp_ratio: int = 4.,
|
|
qkv_bias: bool = True,
|
|
qk_scale: Optional[bool] = None,
|
|
drop_rate: float = 0.0,
|
|
attn_drop_rate: float = 0.0,
|
|
drop_path_rate: float = 0.0,
|
|
norm_cfg: dict = dict(type='LN', eps=1e-6),
|
|
ape: bool = True,
|
|
rpe: bool = False,
|
|
layer_scale_init_value: float = 0.0,
|
|
mask_ratio: float = 0.75,
|
|
reconstruction_type: str = 'pixel',
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
arch=arch,
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
inner_patches=inner_patches,
|
|
stem_mlp_ratio=stem_mlp_ratio,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop_rate=drop_rate,
|
|
attn_drop_rate=attn_drop_rate,
|
|
drop_path_rate=drop_path_rate,
|
|
norm_cfg=norm_cfg,
|
|
ape=ape,
|
|
rpe=rpe,
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
**kwargs,
|
|
)
|
|
|
|
self.pos_embed.requires_grad = False
|
|
self.mask_ratio = mask_ratio
|
|
|
|
assert reconstruction_type in ['pixel', 'clip'], \
|
|
'iTPN method only support `pixel` and `clip`, ' \
|
|
f'but got `{reconstruction_type}`.'
|
|
self.reconstruction_type = reconstruction_type
|
|
self.num_patches = self.patch_embed.num_patches
|
|
|
|
if reconstruction_type == 'clip':
|
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
|
|
|
|
def init_weights(self) -> None:
|
|
"""Initialize position embedding, patch embedding and cls token."""
|
|
super().apply(self._init_weights)
|
|
|
|
if self.reconstruction_type == 'clip':
|
|
trunc_normal_(self.mask_token, std=0.02)
|
|
self.rescale_init_weight()
|
|
else:
|
|
pos_embed = build_2d_sincos_position_embedding(
|
|
int(self.num_patches**.5),
|
|
self.pos_embed.shape[-1],
|
|
cls_token=False)
|
|
self.pos_embed.data.copy_(pos_embed.float())
|
|
|
|
w = self.patch_embed.proj.weight.data
|
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
|
|
|
def rescale_init_weight(self) -> None:
|
|
"""Rescale the initialized weights."""
|
|
|
|
def rescale(param, layer_id):
|
|
param.div_(math.sqrt(2.0 * layer_id))
|
|
|
|
for layer_id, layer in enumerate(self.blocks):
|
|
if isinstance(layer, BlockWithRPE):
|
|
if layer.attn is not None:
|
|
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
|
|
|
def masking_id(self, batch_size, mask_ratio):
|
|
N, L = batch_size, self.pos_embed.size(1)
|
|
len_keep = int(L * (1 - mask_ratio))
|
|
|
|
noise = torch.rand(
|
|
N, L, device=self.pos_embed.device) # noise in [0, 1]
|
|
|
|
# sort noise for each sample
|
|
ids_shuffle = torch.argsort(
|
|
noise, dim=1) # ascend: small is keep, large is remove
|
|
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
|
|
|
# keep the first subset
|
|
ids_keep = ids_shuffle[:, :len_keep]
|
|
# generate the binary mask: 0 is keep, 1 is remove
|
|
mask = torch.ones([N, L], device=self.pos_embed.device)
|
|
mask[:, :ids_keep.size(1)] = 0
|
|
# unshuffle to get the binary mask
|
|
mask = torch.gather(mask, dim=1, index=ids_restore)
|
|
|
|
return ids_keep, ids_restore, mask
|
|
|
|
def forward_pixel(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: Optional[bool] = True
|
|
) -> Tuple[Tuple, torch.Tensor, torch.Tensor]:
|
|
"""Generate features for masked images.
|
|
|
|
The function supports two kind of forward behaviors. If the ``mask`` is
|
|
``True``, the function will generate mask to masking some patches
|
|
randomly and get the hidden features for visible patches, which means
|
|
the function will be executed as masked imagemodeling pre-training;
|
|
if the ``mask`` is ``None`` or ``False``, the forward function will
|
|
call ``super().forward()``, which extract features from images without
|
|
mask.
|
|
|
|
|
|
Args:
|
|
x (torch.Tensor): Input images, which is of shape B x C x H x W.
|
|
mask (bool, optional): To indicate whether the forward function
|
|
generating ``mask`` or not.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
|
|
mask and the ids to restore original image.
|
|
|
|
- ``x`` (torch.Tensor): hidden features, which is of shape
|
|
B x (L * mask_ratio) x C.
|
|
- ``mask`` (torch.Tensor): mask used to mask image.
|
|
- ``ids_restore`` (torch.Tensor): ids to restore original image.
|
|
"""
|
|
if mask is None or False:
|
|
return super().forward(x)
|
|
|
|
else:
|
|
B, C, H, W = x.shape
|
|
ids_keep, ids_restore, mask = self.masking_id(B, self.mask_ratio)
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
x = torch.gather(
|
|
x,
|
|
dim=1,
|
|
index=ids_keep[:, :, None, None,
|
|
None].expand(-1, -1, *x.shape[2:]))
|
|
|
|
outs = []
|
|
for blk in self.blocks[:-self.num_main_blocks]:
|
|
if isinstance(blk, PatchMerge):
|
|
outs.append(x)
|
|
x = blk(x)
|
|
|
|
x = x[..., 0, 0, :]
|
|
if self.ape:
|
|
pos_embed = self.interpolate_pos_encoding(x, H, W)
|
|
pos_embed = torch.gather(
|
|
pos_embed.expand(B, -1, -1),
|
|
dim=1,
|
|
index=ids_keep[:, :, None].expand(-1, -1,
|
|
pos_embed.shape[2]),
|
|
)
|
|
x = x + pos_embed
|
|
x = self.pos_drop(x)
|
|
|
|
for blk in self.blocks[-self.num_main_blocks:]:
|
|
x = blk(x)
|
|
|
|
outs.append(x)
|
|
|
|
return (tuple(outs), mask, ids_restore)
|
|
|
|
def forward_clip(self,
|
|
x: torch.Tensor,
|
|
mask: Optional[bool] = True) -> Tuple:
|
|
"""Generate features for masked images.
|
|
|
|
The function supports two kind of forward behaviors. If the ``mask`` is
|
|
``True``, the function will generate mask to masking some patches
|
|
randomly and get the hidden features for visible patches, which means
|
|
the function will be executed as masked imagemodeling pre-training;
|
|
if the ``mask`` is ``None`` or ``False``, the forward function will
|
|
call ``super().forward()``, which extract features from images without
|
|
mask.
|
|
|
|
|
|
Args:
|
|
x (torch.Tensor): Input images, which is of shape B x C x H x W.
|
|
mask (bool, optional): To indicate whether the forward function
|
|
generating ``mask`` or not.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
|
|
mask and the ids to restore original image.
|
|
|
|
- ``x`` (torch.Tensor): hidden features, which is of shape
|
|
B x (L * mask_ratio) x C.
|
|
- ``mask`` (torch.Tensor): mask used to mask image.
|
|
- ``ids_restore`` (torch.Tensor): ids to restore original image.
|
|
"""
|
|
if mask is None or False:
|
|
return super().forward(x)
|
|
|
|
else:
|
|
B, C, H, W = x.shape
|
|
x = self.patch_embed(x)
|
|
|
|
outs = []
|
|
for blk in self.blocks[:-self.num_main_blocks]:
|
|
if isinstance(blk, PatchMerge):
|
|
outs.append(x)
|
|
x = blk(x)
|
|
|
|
x = x[..., 0, 0, :]
|
|
B, L, _ = x.shape
|
|
mask_token = self.mask_token.expand(B, L, -1)
|
|
w = mask.flatten(1).unsqueeze(-1).type_as(mask_token)
|
|
x = x * (1. - w) + mask_token * w
|
|
|
|
if self.ape:
|
|
pos_embed = self.interpolate_pos_encoding(x, H, W)
|
|
x = x + pos_embed
|
|
x = self.pos_drop(x)
|
|
|
|
rpe_index = True if self.rpe else None
|
|
|
|
for blk in self.blocks[-self.num_main_blocks:]:
|
|
x = blk(x, rpe_index)
|
|
|
|
outs.append(x)
|
|
|
|
return tuple(outs)
|
|
|
|
def forward(self, x: torch.Tensor, mask: Optional[bool] = True) -> Tuple:
|
|
"""Generate features for masked images.
|
|
|
|
The function supports two kind of forward behaviors. If the ``mask`` is
|
|
``True``, the function will generate mask to masking some patches
|
|
randomly and get the hidden features for visible patches, which means
|
|
the function will be executed as masked imagemodeling pre-training;
|
|
if the ``mask`` is ``None`` or ``False``, the forward function will
|
|
call ``super().forward()``, which extract features from images without
|
|
mask.
|
|
|
|
|
|
Args:
|
|
x (torch.Tensor): Input images, which is of shape B x C x H x W.
|
|
mask (bool, optional): To indicate whether the forward function
|
|
generating ``mask`` or not.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
|
|
mask and the ids to restore original image.
|
|
|
|
- ``x`` (torch.Tensor): hidden features, which is of shape
|
|
B x (L * mask_ratio) x C.
|
|
- ``mask`` (torch.Tensor): mask used to mask image.
|
|
- ``ids_restore`` (torch.Tensor): ids to restore original image.
|
|
"""
|
|
|
|
if self.reconstruction_type == 'pixel':
|
|
return self.forward_pixel(x, mask)
|
|
return self.forward_clip(x, mask)
|
|
|
|
|
|
@MODELS.register_module()
|
|
class iTPN(BaseSelfSupervisor):
|
|
"""iTPN.
|
|
|
|
Implementation of `iTPN: Integrally Pre-Trained Transformer Pyramid
|
|
Networks <https://arxiv.org/abs/2211.12735>`_.
|
|
"""
|
|
|
|
def extract_feat(self, inputs: torch.Tensor):
|
|
return self.backbone(inputs, mask=None)
|
|
|
|
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
|
|
**kwargs) -> Dict[str, torch.Tensor]:
|
|
"""The forward function in training.
|
|
|
|
Args:
|
|
inputs (torch.Tensor): The input images.
|
|
data_samples (List[DataSample]): All elements required
|
|
during the forward function.
|
|
|
|
Returns:
|
|
Dict[str, torch.Tensor]: A dictionary of loss components.
|
|
"""
|
|
|
|
if self.backbone.reconstruction_type == 'pixel':
|
|
latent, mask, ids_restore = self.backbone(inputs)
|
|
pred = self.neck(latent, ids_restore)
|
|
|
|
loss = self.head.loss(pred, inputs, mask)
|
|
else:
|
|
mask = torch.stack(
|
|
[data_sample.mask for data_sample in data_samples])
|
|
|
|
img_latent = self.backbone(inputs[0], mask)
|
|
|
|
# inputs[1] is the target image
|
|
with torch.no_grad():
|
|
target = self.target_generator(inputs[1])[0]
|
|
target = target.detach()
|
|
|
|
# iTPN contains a neck module
|
|
feats = self.neck(img_latent)
|
|
loss = self.head.loss(feats, target[:, 1:, :], mask)
|
|
|
|
losses = dict(loss=loss)
|
|
return losses
|