ZhangYiqin da1da48eb6
[Enhance] Add iTPN Supports for Non-three channel image (#1735)
* Add channel argments to mae_head

When trying iTPN pretrain, it only supports images with 3 channels. One of the restrictions is from MAEHead.

* Transfer other argments from iTPNHiViT to HiViT

The HiViT supports specifying channels, but the iTPNHiViT class can't pass channel argments to it. This is one of the reasons that iTPNHiViT implementation only support images with 3 channels.

* Update itpn.py

Fix hint problem
2023-09-04 13:11:16 +08:00

360 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from mmengine.model.weight_init import trunc_normal_
from mmpretrain.models.backbones.hivit import BlockWithRPE, HiViT, PatchMerge
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from ..utils import build_2d_sincos_position_embedding
from .base import BaseSelfSupervisor
@MODELS.register_module()
class iTPNHiViT(HiViT):
"""HiViT for iTPN pre-training.
Args:
img_size (int | tuple): Input image size. Defaults to 224.
patch_size (int | tuple): The patch size. Defaults to 16.
inner_patches (int): Inner patch. Defaults to 4.
stem_mlp_ratio (int): Ratio of MLP hidden dim to embedding dim
in the first two stages. Defaults to 3.
mlp_ratio (int): Ratio of MLP hidden dim to embedding dim in
the last stage. Defaults to 4.
qkv_bias (bool): Enable bias for qkv projections if True.
qk_scale (float): The number of divider after q@k. Default to None.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
ape (bool): If True, add absolute position embedding to
the patch embedding.
rpe (bool): If True, add relative position embedding to
the patch embedding.
layer_scale_init_value (float): Layer-scale init values. Defaults to 0.
mask_ratio (bool): The ratio of total number of patches to be masked.
Defaults to 0.75.
reconstruction_type (str): The reconstruction of self-supervised
learning. Defaults to 'pixel'.
"""
def __init__(
self,
arch='base',
img_size: int = 224,
patch_size: int = 16,
inner_patches: int = 4,
stem_mlp_ratio: int = 3.,
mlp_ratio: int = 4.,
qkv_bias: bool = True,
qk_scale: Optional[bool] = None,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_cfg: dict = dict(type='LN', eps=1e-6),
ape: bool = True,
rpe: bool = False,
layer_scale_init_value: float = 0.0,
mask_ratio: float = 0.75,
reconstruction_type: str = 'pixel',
**kwargs,
):
super().__init__(
arch=arch,
img_size=img_size,
patch_size=patch_size,
inner_patches=inner_patches,
stem_mlp_ratio=stem_mlp_ratio,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_cfg=norm_cfg,
ape=ape,
rpe=rpe,
layer_scale_init_value=layer_scale_init_value,
**kwargs,
)
self.pos_embed.requires_grad = False
self.mask_ratio = mask_ratio
assert reconstruction_type in ['pixel', 'clip'], \
'iTPN method only support `pixel` and `clip`, ' \
f'but got `{reconstruction_type}`.'
self.reconstruction_type = reconstruction_type
self.num_patches = self.patch_embed.num_patches
if reconstruction_type == 'clip':
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
def init_weights(self) -> None:
"""Initialize position embedding, patch embedding and cls token."""
super().apply(self._init_weights)
if self.reconstruction_type == 'clip':
trunc_normal_(self.mask_token, std=0.02)
self.rescale_init_weight()
else:
pos_embed = build_2d_sincos_position_embedding(
int(self.num_patches**.5),
self.pos_embed.shape[-1],
cls_token=False)
self.pos_embed.data.copy_(pos_embed.float())
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def rescale_init_weight(self) -> None:
"""Rescale the initialized weights."""
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
if isinstance(layer, BlockWithRPE):
if layer.attn is not None:
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def masking_id(self, batch_size, mask_ratio):
N, L = batch_size, self.pos_embed.size(1)
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(
N, L, device=self.pos_embed.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=self.pos_embed.device)
mask[:, :ids_keep.size(1)] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return ids_keep, ids_restore, mask
def forward_pixel(
self,
x: torch.Tensor,
mask: Optional[bool] = True
) -> Tuple[Tuple, torch.Tensor, torch.Tensor]:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if mask is None or False:
return super().forward(x)
else:
B, C, H, W = x.shape
ids_keep, ids_restore, mask = self.masking_id(B, self.mask_ratio)
x = self.patch_embed(x)
x = torch.gather(
x,
dim=1,
index=ids_keep[:, :, None, None,
None].expand(-1, -1, *x.shape[2:]))
outs = []
for blk in self.blocks[:-self.num_main_blocks]:
if isinstance(blk, PatchMerge):
outs.append(x)
x = blk(x)
x = x[..., 0, 0, :]
if self.ape:
pos_embed = self.interpolate_pos_encoding(x, H, W)
pos_embed = torch.gather(
pos_embed.expand(B, -1, -1),
dim=1,
index=ids_keep[:, :, None].expand(-1, -1,
pos_embed.shape[2]),
)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks[-self.num_main_blocks:]:
x = blk(x)
outs.append(x)
return (tuple(outs), mask, ids_restore)
def forward_clip(self,
x: torch.Tensor,
mask: Optional[bool] = True) -> Tuple:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if mask is None or False:
return super().forward(x)
else:
B, C, H, W = x.shape
x = self.patch_embed(x)
outs = []
for blk in self.blocks[:-self.num_main_blocks]:
if isinstance(blk, PatchMerge):
outs.append(x)
x = blk(x)
x = x[..., 0, 0, :]
B, L, _ = x.shape
mask_token = self.mask_token.expand(B, L, -1)
w = mask.flatten(1).unsqueeze(-1).type_as(mask_token)
x = x * (1. - w) + mask_token * w
if self.ape:
pos_embed = self.interpolate_pos_encoding(x, H, W)
x = x + pos_embed
x = self.pos_drop(x)
rpe_index = True if self.rpe else None
for blk in self.blocks[-self.num_main_blocks:]:
x = blk(x, rpe_index)
outs.append(x)
return tuple(outs)
def forward(self, x: torch.Tensor, mask: Optional[bool] = True) -> Tuple:
"""Generate features for masked images.
The function supports two kind of forward behaviors. If the ``mask`` is
``True``, the function will generate mask to masking some patches
randomly and get the hidden features for visible patches, which means
the function will be executed as masked imagemodeling pre-training;
if the ``mask`` is ``None`` or ``False``, the forward function will
call ``super().forward()``, which extract features from images without
mask.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward function
generating ``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Hidden features,
mask and the ids to restore original image.
- ``x`` (torch.Tensor): hidden features, which is of shape
B x (L * mask_ratio) x C.
- ``mask`` (torch.Tensor): mask used to mask image.
- ``ids_restore`` (torch.Tensor): ids to restore original image.
"""
if self.reconstruction_type == 'pixel':
return self.forward_pixel(x, mask)
return self.forward_clip(x, mask)
@MODELS.register_module()
class iTPN(BaseSelfSupervisor):
"""iTPN.
Implementation of `iTPN: Integrally Pre-Trained Transformer Pyramid
Networks <https://arxiv.org/abs/2211.12735>`_.
"""
def extract_feat(self, inputs: torch.Tensor):
return self.backbone(inputs, mask=None)
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (torch.Tensor): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
if self.backbone.reconstruction_type == 'pixel':
latent, mask, ids_restore = self.backbone(inputs)
pred = self.neck(latent, ids_restore)
loss = self.head.loss(pred, inputs, mask)
else:
mask = torch.stack(
[data_sample.mask for data_sample in data_samples])
img_latent = self.backbone(inputs[0], mask)
# inputs[1] is the target image
with torch.no_grad():
target = self.target_generator(inputs[1])[0]
target = target.detach()
# iTPN contains a neck module
feats = self.neck(img_latent)
loss = self.head.loss(feats, target[:, 1:, :], mask)
losses = dict(loss=loss)
return losses