mmclassification/.dev_scripts/benchmark_regression/bench_train.yml

89 lines
2.0 KiB
YAML

Models:
- Name: resnet50
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 76.55
Top 5 Accuracy: 93.06
Config: configs/resnet/resnet50_8xb32_in1k.py
Gpus: 8
- Name: seresnet50
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 77.74
Top 5 Accuracy: 93.84
Config: configs/seresnet/seresnet50_8xb32_in1k.py
Gpus: 8
- Name: vit-base
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.37
Top 5 Accuracy: 96.15
Config: configs/vision_transformer/vit-base-p16_pt-32xb128-mae_in1k-224.py
Gpus: 32
- Name: mobilenetv2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.86
Top 5 Accuracy: 90.42
Config: configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py
Gpus: 8
- Name: swin_tiny
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 81.18
Top 5 Accuracy: 95.61
Weights: https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
Config: configs/swin_transformer/swin-tiny_16xb64_in1k.py
Gpus: 16
- Name: vgg16
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.62
Top 5 Accuracy: 90.49
Config: configs/vgg/vgg16_8xb32_in1k.py
Gpus: 8
Months:
- 1
- 4
- 7
- 10
- Name: shufflenet_v2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.55
Top 5 Accuracy: 88.92
Config: configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py
Gpus: 16
Months:
- 2
- 5
- 8
- 11
- Name: resnet-rsb
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 80.12
Top 5 Accuracy: 94.78
Config: configs/resnet/resnet50_8xb256-rsb-a1-600e_in1k.py
Gpus: 8
Months:
- 3
- 6
- 9
- 12