mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* Add swin transformer archs S, B and L. * Add SwinTransformer configs * Add train config files of swin. * Align init method with original code * Use nn.Unfold to merge patch * Change all ConfigDict to dict * Add init_cfg for all subclasses of BaseModule. * Use mmcv version init function * Add Swin README * Use safer cfg copy method * Improve docstring and variable name. * Fix some difference in randaug Fix BGR bug, align scheduler config. Fix label smoothing parameter difference. * Fix missing droppath in attn * Fix bug of relative posititon table if window width is not equal to height. * Make `PatchMerging` more general, support kernel, stride, padding and dilation. * Rename `residual` to `identity` in attention and FFN. * Add `auto_pad` option to auto pad feature map * Improve docstring. * Fix bug in ShiftWMSA padding. * Remove unused `key` and `value` in ShiftWMSA * Move `PatchMerging` into utils and use common `PatchEmbed`. * Use latest `LinearClsHead`, train augments and label smooth settings. And remove original `SwinLinearClsHead`. * Mark some configs as "Evalution Only". * Remove useless comment in config * 1. Move ShiftWindowMSA and WindowMSA to `utils/attention.py` 2. Add docstrings of each module. 3. Fix some variables' names. 4. Other small improvement. * Add unit tests of swin-transformer and patchmerging. * Fix some bugs in unit tests. * Fix bug of rel_position_index if window is not square. * Make WindowMSA implicit, and add unit tests. * Add metafile.yml, update readme and model_zoo.
4.5 KiB
4.5 KiB
English | 简体中文
Introduction
MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 OpenMMLab 项目的成员之一
参考文档:https://mmclassification.readthedocs.io/en/latest/
主要特性
- 支持多样的主干网络与预训练模型
- 支持配置多种训练技巧
- 大量的训练配置文件
- 高效率和高可扩展性
许可证
该项目开源自 Apache 2.0 license.
更新日志
2021/6/3 发布了 v0.12.0 版本
发布历史和更新细节请参考 更新日志
基准测试及模型库
相关结果和模型可在 model zoo 中获得
支持的主干网络:
- ResNet
- ResNeXt
- SE-ResNet
- SE-ResNeXt
- RegNet
- ShuffleNetV1
- ShuffleNetV2
- MobileNetV2
- MobileNetV3
- Swin-Transformer
安装
请参考 安装指南 进行安装
基础教程
请参考 基础教程 来了解 MMClassification 的基本使用。其中还包含了 如何微调模型, 如何增加新数据集, 如何设计数据处理流程, 以及 如何增加新模块 等指南。
参与贡献
我们非常欢迎任何有助于提升 MMClassification 的贡献,请参考 贡献指南 来了解如何参与贡献。
致谢
MMClassification 是一款由不同学校和公司共同贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
OpenMMLab 的其他项目
- MMCV: OpenMMLab 计算机视觉基础库
- MMDetection: OpenMMLab 检测工具箱与测试基准
- MMDetection3D: OpenMMLab 新一代通用 3D 目标检测平台
- MMSegmentation: OpenMMLab 语义分割工具箱与测试基准
- MMAction2: OpenMMLab 新一代视频理解工具箱与测试基准
- MMTracking: OpenMMLab 一体化视频目标感知平台
- MMPose: OpenMMLab 姿态估计工具箱与测试基准
- MMEditing: OpenMMLab 图像视频编辑工具箱
- MMOCR: OpenMMLab 全流程文字检测识别理解工具包
- MMGeneration: OpenMMLab 生成模型工具箱
欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 知乎官方账号,加入 OpenMMLab 团队的 官方交流 QQ 群


我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬