mmclassification/tests/test_models/test_backbones/test_res2net.py

72 lines
2.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmcls.models.backbones import Res2Net
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet_cifar():
# Only support depth 50, 101 and 152
with pytest.raises(KeyError):
Res2Net(depth=18)
# test the feature map size when depth is 50
# and deep_stem=True, avg_down=True
model = Res2Net(
depth=50, out_indices=(0, 1, 2, 3), deep_stem=True, avg_down=True)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model.stem(imgs)
assert feat.shape == (1, 64, 112, 112)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 256, 56, 56)
assert feat[1].shape == (1, 512, 28, 28)
assert feat[2].shape == (1, 1024, 14, 14)
assert feat[3].shape == (1, 2048, 7, 7)
# test the feature map size when depth is 101
# and deep_stem=False, avg_down=False
model = Res2Net(
depth=101, out_indices=(0, 1, 2, 3), deep_stem=False, avg_down=False)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model.conv1(imgs)
assert feat.shape == (1, 64, 112, 112)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 256, 56, 56)
assert feat[1].shape == (1, 512, 28, 28)
assert feat[2].shape == (1, 1024, 14, 14)
assert feat[3].shape == (1, 2048, 7, 7)
# Test Res2Net with first stage frozen
frozen_stages = 1
model = Res2Net(depth=50, frozen_stages=frozen_stages, deep_stem=False)
model.init_weights()
model.train()
assert check_norm_state([model.norm1], False)
for param in model.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False