72 lines
2.3 KiB
Python
72 lines
2.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
|
|
|
|
from mmcls.models.backbones import Res2Net
|
|
|
|
|
|
def check_norm_state(modules, train_state):
|
|
"""Check if norm layer is in correct train state."""
|
|
for mod in modules:
|
|
if isinstance(mod, _BatchNorm):
|
|
if mod.training != train_state:
|
|
return False
|
|
return True
|
|
|
|
|
|
def test_resnet_cifar():
|
|
# Only support depth 50, 101 and 152
|
|
with pytest.raises(KeyError):
|
|
Res2Net(depth=18)
|
|
|
|
# test the feature map size when depth is 50
|
|
# and deep_stem=True, avg_down=True
|
|
model = Res2Net(
|
|
depth=50, out_indices=(0, 1, 2, 3), deep_stem=True, avg_down=True)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model.stem(imgs)
|
|
assert feat.shape == (1, 64, 112, 112)
|
|
feat = model(imgs)
|
|
assert len(feat) == 4
|
|
assert feat[0].shape == (1, 256, 56, 56)
|
|
assert feat[1].shape == (1, 512, 28, 28)
|
|
assert feat[2].shape == (1, 1024, 14, 14)
|
|
assert feat[3].shape == (1, 2048, 7, 7)
|
|
|
|
# test the feature map size when depth is 101
|
|
# and deep_stem=False, avg_down=False
|
|
model = Res2Net(
|
|
depth=101, out_indices=(0, 1, 2, 3), deep_stem=False, avg_down=False)
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model.conv1(imgs)
|
|
assert feat.shape == (1, 64, 112, 112)
|
|
feat = model(imgs)
|
|
assert len(feat) == 4
|
|
assert feat[0].shape == (1, 256, 56, 56)
|
|
assert feat[1].shape == (1, 512, 28, 28)
|
|
assert feat[2].shape == (1, 1024, 14, 14)
|
|
assert feat[3].shape == (1, 2048, 7, 7)
|
|
|
|
# Test Res2Net with first stage frozen
|
|
frozen_stages = 1
|
|
model = Res2Net(depth=50, frozen_stages=frozen_stages, deep_stem=False)
|
|
model.init_weights()
|
|
model.train()
|
|
assert check_norm_state([model.norm1], False)
|
|
for param in model.conv1.parameters():
|
|
assert param.requires_grad is False
|
|
for i in range(1, frozen_stages + 1):
|
|
layer = getattr(model, f'layer{i}')
|
|
for mod in layer.modules():
|
|
if isinstance(mod, _BatchNorm):
|
|
assert mod.training is False
|
|
for param in layer.parameters():
|
|
assert param.requires_grad is False
|