Yixiao Fang e4c4a81b56
[Feature] Support iTPN and HiViT (#1584)
* hivit added

* Update hivit.py

* Update hivit.py

* Add files via upload

* Update __init__.py

* Add files via upload

* Update __init__.py

* Add files via upload

* Update hivit.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* Update itpn.py

* Add files via upload

* Update __init__.py

* Update mae_hivit-base-p16.py

* Delete mim_itpn-base-p16.py

* Add files via upload

* Update itpn_hivit-base-p16.py

* Update itpn.py

* Update hivit.py

* Update __init__.py

* Update mae.py

* Delete hivit.py

* Update __init__.py

* Delete configs/itpn directory

* Add files via upload

* Add files via upload

* Delete configs/hivit directory

* Add files via upload

* refactor and add metafile and readme

* update clip

* add ut

* update ut

* update

* update docstring

* update model.rst

---------

Co-authored-by: 田运杰 <48153283+sunsmarterjie@users.noreply.github.com>
2023-05-26 12:08:34 +08:00

64 lines
1.5 KiB
YAML

Collections:
- Name: HiViT
Metadata:
Architecture:
- Dense Connections
- Dropout
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
Paper:
Title: 'HiViT: A Simple and More Efficient Design of Hierarchical Vision Transformer'
URL: https://arxiv.org/abs/2205.14949
README: configs/hivit/README.md
Code:
URL: null
Version: null
Models:
- Name: hivit-tiny-p16_16xb64_in1k
Metadata:
FLOPs: 4603000000
Parameters: 19181000
Training Data:
- ImageNet-1k
In Collection: HiViT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.1
Task: Image Classification
Weights:
Config: configs/hivit/hivit-tiny-p16_16xb64_in1k.py
- Name: hivit-small-p16_16xb64_in1k
Metadata:
FLOPs: 9072000000
Parameters: 37526000
Training Data:
- ImageNet-1k
In Collection: HiViT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy:
Task: Image Classification
Weights:
Config: configs/hivit/hivit-small-p16_16xb64_in1k.py
- Name: hivit-base-p16_16xb64_in1k
Metadata:
FLOPs: 18474000000
Parameters: 79051000
Training Data:
- ImageNet-1k
In Collection: HiViT
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy:
Task: Image Classification
Weights:
Config: configs/hivit/hivit-base-p16_16xb64_in1k.py