mmclassification/configs/van/van-b2_8xb128_in1k.py

62 lines
1.9 KiB
Python

_base_ = [
'../_base_/models/van/van_b2.py',
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# Note that the mean and variance used here are different from other configs
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in img_norm_cfg['mean'][::-1]],
interpolation='bicubic')),
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=img_norm_cfg['mean'][::-1],
fill_std=img_norm_cfg['std'][::-1]),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
size=(248, -1),
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=128,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))