mmclassification/tests/test_backbones/test_vision_transformer.py

58 lines
1.4 KiB
Python

import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import VGG, VisionTransformer
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_vit_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = VisionTransformer()
model.init_weights(pretrained=0)
# Test ViT base model with input size of 224
# and patch size of 16
model = VisionTransformer()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 768))
def test_vit_hybrid_backbone():
# Test VGG11+ViT-B/16 hybrid model
backbone = VGG(11, norm_eval=True)
backbone.init_weights()
model = VisionTransformer(hybrid_backbone=backbone)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 768))