mmclassification/mmcls/models/utils/data_preprocessor.py

147 lines
5.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import math
from numbers import Number
from typing import Optional, Sequence
import torch
import torch.nn.functional as F
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmcls.registry import MODELS
from .batch_augments import RandomBatchAugment
@MODELS.register_module()
class ClsDataPreprocessor(BaseDataPreprocessor):
"""Image pre-processor for classification tasks.
Comparing with the :class:`mmengine.model.ImgDataPreprocessor`,
1. It won't do normalization if ``mean`` is not specified.
2. It does normalization and color space conversion after stacking batch.
3. It supports batch augmentations like mixup and cutmix.
It provides the data pre-processing as follows
- Collate and move data to the target device.
- Pad inputs to the maximum size of current batch with defined
``pad_value``. The padding size can be divisible by a defined
``pad_size_divisor``
- Stack inputs to batch_inputs.
- Convert inputs from bgr to rgb if the shape of input is (3, H, W).
- Normalize image with defined std and mean.
- Do batch augmentations like Mixup and Cutmix during training.
Args:
mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
Defaults to None.
std (Sequence[Number], optional): The pixel standard deviation of
R, G, B channels. Defaults to None.
pad_size_divisor (int): The size of padded image should be
divisible by ``pad_size_divisor``. Defaults to 1.
pad_value (Number): The padded pixel value. Defaults to 0.
to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
batch_augments (dict, optional): The batch augmentations settings,
including "augments" and "probs". For more details, see
:class:`mmcls.models.RandomBatchAugment`.
"""
def __init__(self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
pad_size_divisor: int = 1,
pad_value: Number = 0,
to_rgb: bool = False,
batch_augments: Optional[dict] = None):
super().__init__()
self.pad_size_divisor = pad_size_divisor
self.pad_value = pad_value
self.to_rgb = to_rgb
if mean is not None:
assert std is not None, 'To enable the normalization in ' \
'preprocessing, please specify both `mean` and `std`.'
# Enable the normalization in preprocessing.
self._enable_normalize = True
self.register_buffer('mean',
torch.tensor(mean).view(-1, 1, 1), False)
self.register_buffer('std',
torch.tensor(std).view(-1, 1, 1), False)
else:
self._enable_normalize = False
if batch_augments is not None:
self.batch_augments = RandomBatchAugment(**batch_augments)
else:
self.batch_augments = None
def forward(self, data: dict, training: bool = False) -> dict:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation based on ``BaseDataPreprocessor``.
Args:
data (dict): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
data = self.cast_data(data)
inputs = data['inputs']
if isinstance(inputs, torch.Tensor):
# The branch if use `default_collate` as the collate_fn in the
# dataloader.
# ------ To RGB ------
if self.to_rgb and inputs.size(1) == 3:
inputs = inputs.flip(1)
# -- Normalization ---
inputs = inputs.float()
if self._enable_normalize:
inputs = (inputs - self.mean) / self.std
# ------ Padding -----
if self.pad_size_divisor > 1:
h, w = inputs.shape[-2:]
target_h = math.ceil(
h / self.pad_size_divisor) * self.pad_size_divisor
target_w = math.ceil(
w / self.pad_size_divisor) * self.pad_size_divisor
pad_h = target_h - h
pad_w = target_w - w
inputs = F.pad(inputs, (0, pad_w, 0, pad_h), 'constant',
self.pad_value)
else:
# The branch if use `pseudo_collate` as the collate_fn in the
# dataloader.
processed_inputs = []
for input_ in inputs:
# ------ To RGB ------
if self.to_rgb and input_.size(0) == 3:
input_ = input_.flip(0)
# -- Normalization ---
input_ = input_.float()
if self._enable_normalize:
input_ = (input_ - self.mean) / self.std
processed_inputs.append(input_)
# Combine padding and stack
inputs = stack_batch(processed_inputs, self.pad_size_divisor,
self.pad_value)
# ----- Batch Aug ----
if training and self.batch_augments is not None:
data_samples = data['data_samples']
inputs, data_samples = self.batch_augments(inputs, data_samples)
data['data_samples'] = data_samples
data['inputs'] = inputs
return data