395 lines
13 KiB
Python
395 lines
13 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
# Modified from https://github.com/zejiangh/MILAN
|
|
from collections import OrderedDict
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from mmengine.logging import MMLogger
|
|
from torch import nn
|
|
|
|
from mmpretrain.registry import MODELS
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Forward function."""
|
|
orig_type = x.dtype
|
|
ret = super().forward(x.type(torch.float32))
|
|
return ret.type(orig_type)
|
|
|
|
|
|
@MODELS.register_module()
|
|
class QuickGELU(nn.Module):
|
|
"""A faster version of GELU."""
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Forward function."""
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
"""Residual Attention Block (RAB).
|
|
|
|
This module implements the same function as the MultiheadAttention,
|
|
but with a different interface, which is mainly used
|
|
in CLIP.
|
|
|
|
Args:
|
|
d_model (int): The feature dimension.
|
|
n_head (int): The number of attention heads.
|
|
attn_mask (torch.Tensor, optional): The attention mask.
|
|
Defaults to None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
d_model: int,
|
|
n_head: int,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
return_attention: bool = False) -> None:
|
|
super().__init__()
|
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head)
|
|
self.ln_1 = LayerNorm(d_model)
|
|
self.mlp = nn.Sequential(
|
|
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
|
|
('gelu', QuickGELU()),
|
|
('c_proj', nn.Linear(d_model * 4, d_model))]))
|
|
self.ln_2 = LayerNorm(d_model)
|
|
self.attn_mask = attn_mask
|
|
|
|
self.return_attention = return_attention
|
|
|
|
def attention(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""Attention function."""
|
|
self.attn_mask = self.attn_mask.to(
|
|
dtype=x.dtype,
|
|
device=x.device) if self.attn_mask is not None else None
|
|
if self.return_attention:
|
|
return self.attn(
|
|
x,
|
|
x,
|
|
x,
|
|
need_weights=self.return_attention,
|
|
attn_mask=self.attn_mask)
|
|
else:
|
|
return self.attn(
|
|
x,
|
|
x,
|
|
x,
|
|
need_weights=self.return_attention,
|
|
attn_mask=self.attn_mask)[0]
|
|
|
|
def forward(
|
|
self, x: torch.Tensor
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
"""Forward function."""
|
|
if self.return_attention:
|
|
x_, attention = self.attention(self.ln_1(x))
|
|
x = x + x_
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x, attention
|
|
else:
|
|
x = x + self.attention(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
"""Transformer.
|
|
|
|
Both visual and text branches use this transformer.
|
|
|
|
Args:
|
|
width (int): The feature dimension.
|
|
layers (int): The number of layers.
|
|
heads (int): The number of attention heads.
|
|
attn_mask (torch.Tensor, optional): The attention mask.
|
|
"""
|
|
|
|
def __init__(self,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
attn_mask: Optional[torch.Tensor] = None) -> None:
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
self.resblocks = nn.ModuleList()
|
|
for _ in range(layers - 1):
|
|
self.resblocks.append(
|
|
ResidualAttentionBlock(width, heads, attn_mask))
|
|
self.resblocks.append(
|
|
ResidualAttentionBlock(
|
|
width, heads, attn_mask, return_attention=True))
|
|
|
|
def forward(
|
|
self, x: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Forward function."""
|
|
z = []
|
|
for idx, blk in enumerate(self.resblocks):
|
|
if idx < self.layers - 1:
|
|
x = blk(x)
|
|
z.append(x.permute(1, 0, 2))
|
|
else:
|
|
x, attention = blk(x)
|
|
z.append(x.permute(1, 0, 2))
|
|
return x, attention, z
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
"""Vision Transformer for CLIP.
|
|
|
|
Args:
|
|
input_resolution (int): The image size.
|
|
patch_size (int): The patch size.
|
|
width (int): The feature dimension.
|
|
layers (int): The number of layers.
|
|
heads (int): The number of attention heads.
|
|
out_dim (int): The output dimension.
|
|
fineturn (bool): Whether to fineturn the model.
|
|
average_target (bool): Whether to average the target.
|
|
"""
|
|
|
|
def __init__(self,
|
|
input_resolution: int,
|
|
patch_size: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
output_dim: int,
|
|
finetune=False,
|
|
average_targets: int = 1) -> None:
|
|
super().__init__()
|
|
self.input_resolution = input_resolution
|
|
self.output_dim = output_dim
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=3,
|
|
out_channels=width,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=False)
|
|
|
|
scale = width**-0.5
|
|
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
|
self.positional_embedding = nn.Parameter(scale * torch.randn(
|
|
(input_resolution // patch_size)**2 + 1, width))
|
|
self.ln_pre = LayerNorm(width)
|
|
|
|
self.transformer = Transformer(width, layers, heads)
|
|
|
|
self.finetune = finetune
|
|
if finetune is False:
|
|
self.ln_post = LayerNorm(width)
|
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
|
|
|
self.average_targets = average_targets
|
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Forward function."""
|
|
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
x = x.reshape(x.shape[0], x.shape[1],
|
|
-1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
x = torch.cat([
|
|
self.class_embedding.to(x.dtype) + torch.zeros(
|
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
|
],
|
|
dim=1) # shape = [*, grid ** 2 + 1, width]
|
|
x = x + self.positional_embedding.to(x.dtype)
|
|
x = self.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x, attention, z = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.ln_post(x)
|
|
if self.proj is not None:
|
|
x = x @ self.proj
|
|
|
|
return x, attention
|
|
|
|
|
|
class CLIP(nn.Module):
|
|
"""CLIP.
|
|
|
|
Args:
|
|
embed_dim (int): The embedding dimension.
|
|
image_resolution (int): The image size.
|
|
vision_layers (int): The number of layers in the vision transformer.
|
|
vision_width (int): The feature dimension in the vision transformer.
|
|
vision_patch_size (int): The patch size in the vision transformer.
|
|
context_length (int): The context length.
|
|
vocab_size (int): The vocabulary size.
|
|
transformer_width (int): The feature dimension in the text transformer.
|
|
transformer_heads (int): The number of attention heads in the
|
|
text transformer.
|
|
transformer_layers (int): The number of layers in the text transformer.
|
|
fineturn (bool): Whether to fineturn the model.
|
|
average_target (bool): Whether to average the target.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
image_resolution: int,
|
|
vision_layers: Union[Tuple[int, int, int, int], int],
|
|
vision_width: int,
|
|
vision_patch_size: int,
|
|
context_length: int,
|
|
vocab_size: int,
|
|
transformer_width: int,
|
|
transformer_heads: int,
|
|
transformer_layers: int,
|
|
finetune: bool = False,
|
|
average_targets: int = 1,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.context_length = context_length
|
|
|
|
vision_heads = vision_width // 64
|
|
self.visual = VisionTransformer(
|
|
input_resolution=image_resolution,
|
|
patch_size=vision_patch_size,
|
|
width=vision_width,
|
|
layers=vision_layers,
|
|
heads=vision_heads,
|
|
output_dim=embed_dim,
|
|
finetune=finetune,
|
|
average_targets=average_targets,
|
|
)
|
|
|
|
self.transformer = Transformer(
|
|
width=transformer_width,
|
|
layers=transformer_layers,
|
|
heads=transformer_heads,
|
|
attn_mask=self.build_attention_mask())
|
|
|
|
self.vocab_size = vocab_size
|
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
|
self.positional_embedding = nn.Parameter(
|
|
torch.empty(self.context_length, transformer_width))
|
|
self.ln_final = LayerNorm(transformer_width)
|
|
|
|
self.text_projection = nn.Parameter(
|
|
torch.empty(transformer_width, embed_dim))
|
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
|
|
|
self.initialize_parameters()
|
|
|
|
def initialize_parameters(self) -> None:
|
|
"""Initialize the parameters.
|
|
|
|
The pretrained weight will override the initialized parameters by this
|
|
function.
|
|
"""
|
|
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
|
nn.init.normal_(self.positional_embedding, std=0.01)
|
|
|
|
proj_std = (self.transformer.width**-0.5) * (
|
|
(2 * self.transformer.layers)**-0.5)
|
|
attn_std = self.transformer.width**-0.5
|
|
fc_std = (2 * self.transformer.width)**-0.5
|
|
for block in self.transformer.resblocks:
|
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
|
|
|
if self.text_projection is not None:
|
|
nn.init.normal_(
|
|
self.text_projection, std=self.transformer.width**-0.5)
|
|
|
|
def build_attention_mask(self) -> torch.Tensor:
|
|
"""Build the attention mask."""
|
|
# lazily create causal attention mask, with full attention between the
|
|
# vision tokens pytorch uses additive attention mask; fill with -inf
|
|
mask = torch.empty(self.context_length, self.context_length)
|
|
mask.fill_(float('-inf'))
|
|
mask.triu_(1) # zero out the lower diagonal
|
|
return mask
|
|
|
|
@property
|
|
def dtype(self) -> torch.dtype:
|
|
"""Get the dtype."""
|
|
return self.visual.conv1.weight.dtype
|
|
|
|
def encode_image(self,
|
|
image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encode the image.
|
|
|
|
Get the feature and attention mask from the last layer of the visual
|
|
branch of CLIP.
|
|
|
|
Args:
|
|
image (torch.Tensor): The image tensor with shape NCHW.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask.
|
|
"""
|
|
return self.visual(image.type(self.dtype))
|
|
|
|
|
|
def build_clip_model(state_dict: dict,
|
|
finetune: bool = False,
|
|
average_targets: int = 1) -> nn.Module:
|
|
"""Build the CLIP model.
|
|
|
|
Args:
|
|
state_dict (dict): The pretrained state dict.
|
|
finetune (bool): Whether to fineturn the model.
|
|
average_targets (bool): Whether to average the target.
|
|
|
|
Returns:
|
|
nn.Module: The CLIP model.
|
|
"""
|
|
vit = 'visual.proj' in state_dict
|
|
|
|
if vit:
|
|
vision_width = state_dict['visual.conv1.weight'].shape[0]
|
|
vision_layers = len([
|
|
k for k in state_dict.keys()
|
|
if k.startswith('visual.') and k.endswith('.attn.in_proj_weight')
|
|
])
|
|
vision_patch_size = state_dict['visual.conv1.weight'].shape[-1]
|
|
grid_size = round(
|
|
(state_dict['visual.positional_embedding'].shape[0] - 1)**0.5)
|
|
image_resolution = vision_patch_size * grid_size
|
|
|
|
embed_dim = state_dict['text_projection'].shape[1]
|
|
context_length = state_dict['positional_embedding'].shape[0]
|
|
vocab_size = state_dict['token_embedding.weight'].shape[0]
|
|
transformer_width = state_dict['ln_final.weight'].shape[0]
|
|
transformer_heads = transformer_width // 64
|
|
transformer_layers = len(
|
|
set(
|
|
k.split('.')[2] for k in state_dict
|
|
if k.startswith('transformer.resblocks')))
|
|
|
|
model = CLIP(
|
|
embed_dim,
|
|
image_resolution,
|
|
vision_layers,
|
|
vision_width,
|
|
vision_patch_size,
|
|
context_length,
|
|
vocab_size,
|
|
transformer_width,
|
|
transformer_heads,
|
|
transformer_layers,
|
|
finetune,
|
|
average_targets,
|
|
)
|
|
|
|
for key in ['input_resolution', 'context_length', 'vocab_size']:
|
|
if key in state_dict:
|
|
del state_dict[key]
|
|
|
|
msg = model.load_state_dict(state_dict, strict=False)
|
|
MMLogger.get_current_instance().info(f'Load CLIP model: {msg}')
|
|
return model.eval()
|