Ma Zerun 6847d20d57
[Feature] Support multiple multi-modal algorithms and inferencers. (#1561)
* [Feat] Migrate blip caption to mmpretrain. (#50)

* Migrate blip caption to mmpretrain

* minor fix

* support train

* [Feature] Support OFA caption task. (#51)

* [Feature] Support OFA caption task.

* Remove duplicated files.

* [Feature] Support OFA vqa task. (#58)

* [Feature] Support OFA vqa task.

* Fix lint.

* [Feat] Add BLIP retrieval to mmpretrain. (#55)

* init

* minor fix for train

* fix according to comments

* refactor

* Update Blip retrieval. (#62)

* [Feature] Support OFA visual grounding task. (#59)

* [Feature] Support OFA visual grounding task.

* minor add TODO

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Add flamingos coco caption and vqa. (#60)

* first init

* init flamingo coco

* add vqa

* minor fix

* remove unnecessary modules

* Update config

* Use `ApplyToList`.

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 coco retrieval  (#53)

* [Feature]: Add blip2 retriever

* [Feature]: Add blip2 all modules

* [Feature]: Refine model

* [Feature]: x1

* [Feature]: Runnable coco ret

* [Feature]: Runnable version

* [Feature]: Fix lint

* [Fix]: Fix lint

* [Feature]: Use 364 img size

* [Feature]: Refactor blip2

* [Fix]: Fix lint

* refactor files

* minor fix

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Remove

* fix blip caption inputs (#68)

* [Feat] Add BLIP NLVR support. (#67)

* first init

* init flamingo coco

* add vqa

* add nlvr

* refactor nlvr

* minor fix

* minor fix

* Update dataset

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 Caption (#70)

* [Feature]: Add language model

* [Feature]: blip2 caption forward

* [Feature]: Reproduce the results

* [Feature]: Refactor caption

* refine config

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Migrate BLIP VQA to mmpretrain (#69)

* reformat

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* refactor code

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Update RefCOCO dataset

* [Fix] fix lint

* [Feature] Implement inference APIs for multi-modal tasks. (#65)

* [Feature] Implement inference APIs for multi-modal tasks.

* [Project] Add gradio demo.

* [Improve] Update requirements

* Update flamingo

* Update blip

* Add NLVR inferencer

* Update flamingo

* Update hugging face model register

* Update ofa vqa

* Update BLIP-vqa (#71)

* Update blip-vqa docstring (#72)

* Refine flamingo docstring (#73)

* [Feature]: BLIP2 VQA (#61)

* [Feature]: VQA forward

* [Feature]: Reproduce accuracy

* [Fix]: Fix lint

* [Fix]: Add blank line

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feature]: BLIP2 docstring (#74)

* [Feature]: Add caption docstring

* [Feature]: Add docstring to blip2 vqa

* [Feature]: Add docstring to retrieval

* Update BLIP-2 metafile and README (#75)

* [Feature]: Add readme and docstring

* Update blip2 results

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature] BLIP Visual Grounding on MMPretrain Branch (#66)

* blip grounding merge with mmpretrain

* remove commit

* blip grounding test and inference api

* refcoco dataset

* refcoco dataset refine config

* rebasing

* gitignore

* rebasing

* minor edit

* minor edit

* Update blip-vqa docstring (#72)

* rebasing

* Revert "minor edit"

This reverts commit 639cec757c215e654625ed0979319e60f0be9044.

* blip grounding final

* precommit

* refine config

* refine config

* Update blip visual grounding

---------

Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: mzr1996 <mzr1996@163.com>

* Update visual grounding metric

* Update OFA docstring, README and metafiles. (#76)

* [Docs] Update installation docs and gradio demo docs. (#77)

* Update OFA name

* Update Visual Grounding Visualizer

* Integrate accelerate support

* Fix imports.

* Fix timm backbone

* Update imports

* Update README

* Update circle ci

* Update flamingo config

* Add gradio demo README

* [Feature]: Add scienceqa (#1571)

* [Feature]: Add scienceqa

* [Feature]: Change param name

* Update docs

* Update video

---------

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
Co-authored-by: yingfhu <yingfhu@gmail.com>
Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00

78 lines
3.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import json
from collections import OrderedDict
from typing import List
from mmengine import get_file_backend
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
@DATASETS.register_module()
class COCORetrieval(BaseDataset):
"""COCO Retrieval dataset.
Args:
ann_file (str): Annotation file path.
test_mode (bool): Whether dataset is used for evaluation. This will
decide the annotation format in data list annotations.
Defaults to False.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str | dict): Prefix for training data. Defaults to ''.
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def load_data_list(self) -> List[dict]:
"""Load data list."""
# get file backend
img_prefix = self.data_prefix['img_path']
file_backend = get_file_backend(img_prefix)
anno_info = json.load(open(self.ann_file, 'r'))
# mapping img_id to img filename
img_dict = OrderedDict()
for idx, img in enumerate(anno_info['images']):
if img['id'] not in img_dict:
img_rel_path = img['coco_url'].rsplit('/', 2)[-2:]
img_path = file_backend.join_path(img_prefix, *img_rel_path)
# create new idx for image
img_dict[img['id']] = dict(
ori_id=img['id'],
image_id=idx, # will be used for evaluation
img_path=img_path,
text=[],
gt_text_id=[],
gt_image_id=[],
)
train_list = []
for idx, anno in enumerate(anno_info['annotations']):
anno['text'] = anno.pop('caption')
anno['ori_id'] = anno.pop('id')
anno['text_id'] = idx # will be used for evaluation
# 1. prepare train data list item
train_data = anno.copy()
train_image = img_dict[train_data['image_id']]
train_data['img_path'] = train_image['img_path']
train_data['image_ori_id'] = train_image['ori_id']
train_data['image_id'] = train_image['image_id']
train_data['is_matched'] = True
train_list.append(train_data)
# 2. prepare eval data list item based on img dict
img_dict[anno['image_id']]['gt_text_id'].append(anno['text_id'])
img_dict[anno['image_id']]['text'].append(anno['text'])
img_dict[anno['image_id']]['gt_image_id'].append(
train_image['image_id'])
self.img_size = len(img_dict)
self.text_size = len(anno_info['annotations'])
# return needed format data list
if self.test_mode:
return list(img_dict.values())
return train_list