mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
78 lines
3.0 KiB
Python
78 lines
3.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import json
|
|
from collections import OrderedDict
|
|
from typing import List
|
|
|
|
from mmengine import get_file_backend
|
|
|
|
from mmpretrain.registry import DATASETS
|
|
from .base_dataset import BaseDataset
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class COCORetrieval(BaseDataset):
|
|
"""COCO Retrieval dataset.
|
|
|
|
Args:
|
|
ann_file (str): Annotation file path.
|
|
test_mode (bool): Whether dataset is used for evaluation. This will
|
|
decide the annotation format in data list annotations.
|
|
Defaults to False.
|
|
data_root (str): The root directory for ``data_prefix`` and
|
|
``ann_file``. Defaults to ''.
|
|
data_prefix (str | dict): Prefix for training data. Defaults to ''.
|
|
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple.
|
|
**kwargs: Other keyword arguments in :class:`BaseDataset`.
|
|
"""
|
|
|
|
def load_data_list(self) -> List[dict]:
|
|
"""Load data list."""
|
|
# get file backend
|
|
img_prefix = self.data_prefix['img_path']
|
|
file_backend = get_file_backend(img_prefix)
|
|
|
|
anno_info = json.load(open(self.ann_file, 'r'))
|
|
# mapping img_id to img filename
|
|
img_dict = OrderedDict()
|
|
for idx, img in enumerate(anno_info['images']):
|
|
if img['id'] not in img_dict:
|
|
img_rel_path = img['coco_url'].rsplit('/', 2)[-2:]
|
|
img_path = file_backend.join_path(img_prefix, *img_rel_path)
|
|
|
|
# create new idx for image
|
|
img_dict[img['id']] = dict(
|
|
ori_id=img['id'],
|
|
image_id=idx, # will be used for evaluation
|
|
img_path=img_path,
|
|
text=[],
|
|
gt_text_id=[],
|
|
gt_image_id=[],
|
|
)
|
|
|
|
train_list = []
|
|
for idx, anno in enumerate(anno_info['annotations']):
|
|
anno['text'] = anno.pop('caption')
|
|
anno['ori_id'] = anno.pop('id')
|
|
anno['text_id'] = idx # will be used for evaluation
|
|
# 1. prepare train data list item
|
|
train_data = anno.copy()
|
|
train_image = img_dict[train_data['image_id']]
|
|
train_data['img_path'] = train_image['img_path']
|
|
train_data['image_ori_id'] = train_image['ori_id']
|
|
train_data['image_id'] = train_image['image_id']
|
|
train_data['is_matched'] = True
|
|
train_list.append(train_data)
|
|
# 2. prepare eval data list item based on img dict
|
|
img_dict[anno['image_id']]['gt_text_id'].append(anno['text_id'])
|
|
img_dict[anno['image_id']]['text'].append(anno['text'])
|
|
img_dict[anno['image_id']]['gt_image_id'].append(
|
|
train_image['image_id'])
|
|
|
|
self.img_size = len(img_dict)
|
|
self.text_size = len(anno_info['annotations'])
|
|
|
|
# return needed format data list
|
|
if self.test_mode:
|
|
return list(img_dict.values())
|
|
return train_list
|