mmclassification/mmcls/models/classifiers/image.py

102 lines
3.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from ..builder import CLASSIFIERS, build_backbone, build_head, build_neck
from ..utils.augment import Augments
from .base import BaseClassifier
@CLASSIFIERS.register_module()
class ImageClassifier(BaseClassifier):
def __init__(self,
backbone,
neck=None,
head=None,
pretrained=None,
train_cfg=None,
init_cfg=None):
super(ImageClassifier, self).__init__(init_cfg)
if pretrained is not None:
warnings.warn('DeprecationWarning: pretrained is a deprecated \
key, please consider using init_cfg')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
self.backbone = build_backbone(backbone)
if neck is not None:
self.neck = build_neck(neck)
if head is not None:
self.head = build_head(head)
self.augments = None
if train_cfg is not None:
augments_cfg = train_cfg.get('augments', None)
if augments_cfg is not None:
self.augments = Augments(augments_cfg)
else:
# Considering BC-breaking
mixup_cfg = train_cfg.get('mixup', None)
cutmix_cfg = train_cfg.get('cutmix', None)
assert mixup_cfg is None or cutmix_cfg is None, \
'If mixup and cutmix are set simultaneously,' \
'use augments instead.'
if mixup_cfg is not None:
warnings.warn('The mixup attribute will be deprecated. '
'Please use augments instead.')
cfg = copy.deepcopy(mixup_cfg)
cfg['type'] = 'BatchMixup'
# In the previous version, mixup_prob is always 1.0.
cfg['prob'] = 1.0
self.augments = Augments(cfg)
if cutmix_cfg is not None:
warnings.warn('The cutmix attribute will be deprecated. '
'Please use augments instead.')
cfg = copy.deepcopy(cutmix_cfg)
cutmix_prob = cfg.pop('cutmix_prob')
cfg['type'] = 'BatchCutMix'
cfg['prob'] = cutmix_prob
self.augments = Augments(cfg)
def extract_feat(self, img):
"""Directly extract features from the backbone + neck."""
x = self.backbone(img)
if self.with_neck:
x = self.neck(x)
return x
def forward_train(self, img, gt_label, **kwargs):
"""Forward computation during training.
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
gt_label (Tensor): It should be of shape (N, 1) encoding the
ground-truth label of input images for single label task. It
shoulf be of shape (N, C) encoding the ground-truth label
of input images for multi-labels task.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if self.augments is not None:
img, gt_label = self.augments(img, gt_label)
x = self.extract_feat(img)
losses = dict()
loss = self.head.forward_train(x, gt_label)
losses.update(loss)
return losses
def simple_test(self, img, img_metas):
"""Test without augmentation."""
x = self.extract_feat(img)
x_dims = len(x.shape)
if x_dims == 1:
x.unsqueeze_(0)
return self.head.simple_test(x)