mmclassification/tests/test_models/test_utils/test_batch_augments.py

240 lines
9.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
from unittest.mock import MagicMock, patch
import numpy as np
import torch
from mmcls.models import Mixup, RandomBatchAugment
from mmcls.registry import BATCH_AUGMENTS
from mmcls.structures import ClsDataSample
class TestRandomBatchAugment(TestCase):
def test_initialize(self):
# test single augmentation
augments = dict(type='Mixup', alpha=1.)
batch_augments = RandomBatchAugment(augments)
self.assertIsInstance(batch_augments.augments, list)
self.assertEqual(len(batch_augments.augments), 1)
# test specify augments with object
augments = Mixup(alpha=1.)
batch_augments = RandomBatchAugment(augments)
self.assertIsInstance(batch_augments.augments, list)
self.assertEqual(len(batch_augments.augments), 1)
# test multiple augmentation
augments = [
dict(type='Mixup', alpha=1.),
dict(type='CutMix', alpha=0.8),
]
batch_augments = RandomBatchAugment(augments)
# mixup, cutmix
self.assertEqual(len(batch_augments.augments), 2)
self.assertIsNone(batch_augments.probs)
# test specify probs
augments = [
dict(type='Mixup', alpha=1.),
dict(type='CutMix', alpha=0.8),
]
batch_augments = RandomBatchAugment(augments, probs=[0.5, 0.3])
# mixup, cutmix and None
self.assertEqual(len(batch_augments.augments), 3)
self.assertAlmostEqual(batch_augments.probs[-1], 0.2)
# test assertion
with self.assertRaisesRegex(AssertionError, 'Got 2 vs 1'):
RandomBatchAugment(augments, probs=0.5)
with self.assertRaisesRegex(AssertionError, 'exceeds 1.'):
RandomBatchAugment(augments, probs=[0.5, 0.6])
def test_call(self):
inputs = torch.rand(2, 3, 224, 224)
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(2)]
augments = [
dict(type='Mixup', alpha=1.),
dict(type='CutMix', alpha=0.8),
]
batch_augments = RandomBatchAugment(augments, probs=[0.5, 0.3])
with patch('numpy.random', np.random.RandomState(0)):
batch_augments.augments[1] = MagicMock()
batch_augments(inputs, data_samples)
batch_augments.augments[1].assert_called_once_with(
inputs, data_samples)
augments = [
dict(type='Mixup', alpha=1.),
dict(type='CutMix', alpha=0.8),
]
batch_augments = RandomBatchAugment(augments, probs=[0.0, 0.0])
mixed_inputs, mixed_samples = batch_augments(inputs, data_samples)
self.assertIs(mixed_inputs, inputs)
self.assertIs(mixed_samples, data_samples)
class TestMixup(TestCase):
DEFAULT_ARGS = dict(type='Mixup', alpha=1.)
def test_initialize(self):
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'}
BATCH_AUGMENTS.build(cfg)
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'num_classes': 'unknown'}
BATCH_AUGMENTS.build(cfg)
def test_call(self):
inputs = torch.rand(2, 3, 224, 224)
data_samples = [
ClsDataSample(metainfo={
'num_classes': 10
}).set_gt_label(1) for _ in range(2)
]
# test get num_classes from data_samples
mixup = BATCH_AUGMENTS.build(self.DEFAULT_ARGS)
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (10, ))
with self.assertRaisesRegex(RuntimeError, 'Not specify'):
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(2)]
mixup(inputs, data_samples)
# test binary classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 1}
mixup = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([]) for _ in range(2)]
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (1, ))
# test multi-label classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 5}
mixup = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([1, 2]) for _ in range(2)]
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (5, ))
class TestCutMix(TestCase):
DEFAULT_ARGS = dict(type='CutMix', alpha=1.)
def test_initialize(self):
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'}
BATCH_AUGMENTS.build(cfg)
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'num_classes': 'unknown'}
BATCH_AUGMENTS.build(cfg)
def test_call(self):
inputs = torch.rand(2, 3, 224, 224)
data_samples = [
ClsDataSample(metainfo={
'num_classes': 10
}).set_gt_label(1) for _ in range(2)
]
# test with cutmix_minmax
cfg = {**self.DEFAULT_ARGS, 'cutmix_minmax': (0.1, 0.2)}
cutmix = BATCH_AUGMENTS.build(cfg)
mixed_inputs, mixed_samples = cutmix(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (10, ))
# test without correct_lam
cfg = {**self.DEFAULT_ARGS, 'correct_lam': False}
cutmix = BATCH_AUGMENTS.build(cfg)
mixed_inputs, mixed_samples = cutmix(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (10, ))
# test get num_classes from data_samples
cutmix = BATCH_AUGMENTS.build(self.DEFAULT_ARGS)
mixed_inputs, mixed_samples = cutmix(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (10, ))
with self.assertRaisesRegex(RuntimeError, 'Not specify'):
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(2)]
cutmix(inputs, data_samples)
# test binary classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 1}
cutmix = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([]) for _ in range(2)]
mixed_inputs, mixed_samples = cutmix(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (1, ))
# test multi-label classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 5}
cutmix = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([1, 2]) for _ in range(2)]
mixed_inputs, mixed_samples = cutmix(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (5, ))
class TestResizeMix(TestCase):
DEFAULT_ARGS = dict(type='ResizeMix', alpha=1.)
def test_initialize(self):
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'alpha': 'unknown'}
BATCH_AUGMENTS.build(cfg)
with self.assertRaises(AssertionError):
cfg = {**self.DEFAULT_ARGS, 'num_classes': 'unknown'}
BATCH_AUGMENTS.build(cfg)
def test_call(self):
inputs = torch.rand(2, 3, 224, 224)
data_samples = [
ClsDataSample(metainfo={
'num_classes': 10
}).set_gt_label(1) for _ in range(2)
]
# test get num_classes from data_samples
mixup = BATCH_AUGMENTS.build(self.DEFAULT_ARGS)
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (10, ))
with self.assertRaisesRegex(RuntimeError, 'Not specify'):
data_samples = [ClsDataSample().set_gt_label(1) for _ in range(2)]
mixup(inputs, data_samples)
# test binary classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 1}
mixup = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([]) for _ in range(2)]
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (1, ))
# test multi-label classification
cfg = {**self.DEFAULT_ARGS, 'num_classes': 5}
mixup = BATCH_AUGMENTS.build(cfg)
data_samples = [ClsDataSample().set_gt_label([1, 2]) for _ in range(2)]
mixed_inputs, mixed_samples = mixup(inputs, data_samples)
self.assertEqual(mixed_inputs.shape, (2, 3, 224, 224))
self.assertEqual(mixed_samples[0].gt_label.score.shape, (5, ))