604 lines
23 KiB
Python
604 lines
23 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
import mmengine
|
|
import numpy as np
|
|
import torch
|
|
from mmcv.image import imread
|
|
from mmengine.config import Config
|
|
from mmengine.dataset import BaseDataset, Compose, default_collate
|
|
|
|
from mmpretrain.registry import TRANSFORMS
|
|
from mmpretrain.structures import DataSample
|
|
from mmpretrain.utils import track
|
|
from .base import BaseInferencer
|
|
from .base import InputType as ImageType
|
|
from .base import ModelType
|
|
from .model import list_models
|
|
|
|
|
|
def filter_transforms(transforms: list, data_info: dict):
|
|
"""Filter pipeline to avoid KeyError with partial data info."""
|
|
data_info = deepcopy(data_info)
|
|
filtered_transforms = []
|
|
for t in transforms:
|
|
try:
|
|
data_info = t(data_info)
|
|
filtered_transforms.append(t)
|
|
except KeyError:
|
|
pass
|
|
return filtered_transforms
|
|
|
|
|
|
class TextToImageRetrievalInferencer(BaseInferencer):
|
|
"""The inferencer for text to image retrieval.
|
|
|
|
Args:
|
|
model (BaseModel | str | Config): A model name or a path to the config
|
|
file, or a :obj:`BaseModel` object. The model name can be found
|
|
by ``TextToImageRetrievalInferencer.list_models()`` and you can also
|
|
query it in :doc:`/modelzoo_statistics`.
|
|
prototype (str | list | dict | DataLoader | BaseDataset): The images to
|
|
be retrieved. It can be the following types:
|
|
|
|
- str: The directory of the the images.
|
|
- list: A list of path of the images.
|
|
- dict: A config dict of the a prototype dataset.
|
|
- BaseDataset: A prototype dataset.
|
|
- DataLoader: A data loader to load the prototype data.
|
|
|
|
prototype_cache (str, optional): The path of the generated prototype
|
|
features. If exists, directly load the cache instead of re-generate
|
|
the prototype features. If not exists, save the generated features
|
|
to the path. Defaults to None.
|
|
fast_match (bool): Some algorithms will record extra image features for
|
|
further matching, which may consume large memory, set True to avoid
|
|
this behavior. Defaults to True.
|
|
pretrained (str, optional): Path to the checkpoint. If None, it will
|
|
try to find a pre-defined weight from the model you specified
|
|
(only work if the ``model`` is a model name). Defaults to None.
|
|
device (str, optional): Device to run inference. If None, the available
|
|
device will be automatically used. Defaults to None.
|
|
**kwargs: Other keyword arguments to initialize the model (only work if
|
|
the ``model`` is a model name).
|
|
|
|
Example:
|
|
>>> from mmpretrain import TextToImageRetrievalInferencer
|
|
>>> inferencer = TextToImageRetrievalInferencer(
|
|
... 'blip-base_3rdparty_retrieval',
|
|
... prototype='./demo/',
|
|
... prototype_cache='t2i_retri.pth')
|
|
>>> inferencer('A cat and a dog.')[0]
|
|
{'match_score': tensor(0.3855, device='cuda:0'),
|
|
'sample_idx': 1,
|
|
'sample': {'img_path': './demo/cat-dog.png'}}
|
|
""" # noqa: E501
|
|
|
|
visualize_kwargs: set = {
|
|
'draw_score', 'show_dir', 'show', 'wait_time', 'figsize', 'topk'
|
|
}
|
|
postprocess_kwargs: set = {'topk'}
|
|
|
|
def __init__(self,
|
|
model: ModelType,
|
|
prototype,
|
|
prototype_cache=None,
|
|
fast_match=True,
|
|
prepare_batch_size=8,
|
|
pretrained: Union[bool, str] = True,
|
|
device: Union[str, torch.device, None] = None,
|
|
**kwargs) -> None:
|
|
super().__init__(
|
|
model=model, pretrained=pretrained, device=device, **kwargs)
|
|
|
|
self.img_pipeline, self.text_pipeline = self.pipeline
|
|
|
|
if hasattr(self.model, 'fast_match'):
|
|
self.model.fast_match = fast_match
|
|
|
|
self.prototype_dataset = self._prepare_prototype(
|
|
prototype, prototype_cache, batch_size=prepare_batch_size)
|
|
|
|
def _prepare_prototype(self, prototype, cache=None, batch_size=8):
|
|
from mmengine.dataset import DefaultSampler
|
|
from torch.utils.data import DataLoader
|
|
|
|
def build_dataloader(dataset):
|
|
return DataLoader(
|
|
dataset,
|
|
batch_size=batch_size,
|
|
collate_fn=default_collate,
|
|
sampler=DefaultSampler(dataset, shuffle=False),
|
|
persistent_workers=False,
|
|
)
|
|
|
|
if isinstance(prototype, str):
|
|
# A directory path of images
|
|
prototype = dict(
|
|
type='CustomDataset', with_label=False, data_root=prototype)
|
|
|
|
if isinstance(prototype, list):
|
|
test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
|
|
dataset = BaseDataset(
|
|
lazy_init=True, serialize_data=False, pipeline=test_pipeline)
|
|
dataset.data_list = [{
|
|
'sample_idx': i,
|
|
'img_path': file
|
|
} for i, file in enumerate(prototype)]
|
|
dataset._fully_initialized = True
|
|
dataloader = build_dataloader(dataset)
|
|
elif isinstance(prototype, dict):
|
|
# A config of dataset
|
|
from mmpretrain.registry import DATASETS
|
|
test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
|
|
prototype.setdefault('pipeline', test_pipeline)
|
|
dataset = DATASETS.build(prototype)
|
|
dataloader = build_dataloader(dataset)
|
|
elif isinstance(prototype, list):
|
|
test_pipeline = [dict(type='LoadImageFromFile'), self.img_pipeline]
|
|
dataset = BaseDataset(
|
|
lazy_init=True, serialize_data=False, pipeline=test_pipeline)
|
|
dataset.data_list = [{
|
|
'sample_idx': i,
|
|
'img_path': file
|
|
} for i, file in enumerate(prototype)]
|
|
dataset._fully_initialized = True
|
|
dataloader = build_dataloader(dataset)
|
|
elif isinstance(prototype, DataLoader):
|
|
dataset = prototype.dataset
|
|
dataloader = prototype
|
|
elif isinstance(prototype, BaseDataset):
|
|
dataset = prototype
|
|
dataloader = build_dataloader(dataset)
|
|
else:
|
|
raise TypeError(f'Unsupported prototype type {type(prototype)}.')
|
|
|
|
if cache is not None and Path(cache).exists():
|
|
self.prototype = torch.load(cache)
|
|
else:
|
|
prototype = []
|
|
for data_batch in track(dataloader, 'Prepare prototype...'):
|
|
with torch.no_grad():
|
|
data_batch = self.model.data_preprocessor(
|
|
data_batch, False)
|
|
feats = self.model._run_forward(data_batch, mode='tensor')
|
|
prototype.append(feats)
|
|
prototype = {
|
|
k: torch.cat([d[k] for d in prototype])
|
|
for k in prototype[0]
|
|
}
|
|
self.prototype = prototype
|
|
|
|
from mmengine.logging import MMLogger
|
|
logger = MMLogger.get_current_instance()
|
|
if cache is None:
|
|
logger.info('The prototype has been prepared, you can use '
|
|
'`save_prototype` to dump it into a pickle '
|
|
'file for the future usage.')
|
|
elif not Path(cache).exists():
|
|
self.save_prototype(cache)
|
|
logger.info(f'The prototype has been saved at {cache}.')
|
|
|
|
return dataset
|
|
|
|
def save_prototype(self, path):
|
|
torch.save(self.prototype, path)
|
|
|
|
def __call__(self,
|
|
inputs: ImageType,
|
|
return_datasamples: bool = False,
|
|
batch_size: int = 1,
|
|
**kwargs) -> dict:
|
|
"""Call the inferencer.
|
|
|
|
Args:
|
|
inputs (str | array | list): The image path or array, or a list of
|
|
images.
|
|
return_datasamples (bool): Whether to return results as
|
|
:obj:`DataSample`. Defaults to False.
|
|
batch_size (int): Batch size. Defaults to 1.
|
|
resize (int, optional): Resize the long edge of the image to the
|
|
specified length before visualization. Defaults to None.
|
|
draw_score (bool): Whether to draw the match scores.
|
|
Defaults to True.
|
|
show (bool): Whether to display the visualization result in a
|
|
window. Defaults to False.
|
|
wait_time (float): The display time (s). Defaults to 0, which means
|
|
"forever".
|
|
show_dir (str, optional): If not None, save the visualization
|
|
results in the specified directory. Defaults to None.
|
|
|
|
Returns:
|
|
list: The inference results.
|
|
"""
|
|
return super().__call__(inputs, return_datasamples, batch_size,
|
|
**kwargs)
|
|
|
|
@torch.no_grad()
|
|
def forward(self, data: dict, **kwargs):
|
|
"""Feed the inputs to the model."""
|
|
data = self.model.data_preprocessor(data, False)
|
|
data_samples = data['data_samples']
|
|
feats = self.prototype.copy()
|
|
feats.update(self.model.extract_feat(data_samples=data_samples))
|
|
return self.model.predict_all(feats, data_samples, cal_i2t=False)[0]
|
|
|
|
def _init_pipeline(self, cfg: Config) -> Callable:
|
|
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
|
test_transfroms = [TRANSFORMS.build(t) for t in test_pipeline_cfg]
|
|
img_info = {'img': np.zeros((224, 224, 3), dtype=np.uint8)}
|
|
text_info = {'text': 'example'}
|
|
img_pipeline = Compose(filter_transforms(test_transfroms, img_info))
|
|
text_pipeline = Compose(filter_transforms(test_transfroms, text_info))
|
|
return img_pipeline, text_pipeline
|
|
|
|
def preprocess(self, inputs: List[str], batch_size: int = 1):
|
|
|
|
def process_text(input_: str):
|
|
return self.text_pipeline({'text': input_})
|
|
|
|
chunked_data = self._get_chunk_data(
|
|
map(process_text, inputs), batch_size)
|
|
yield from map(default_collate, chunked_data)
|
|
|
|
def visualize(self,
|
|
ori_inputs: List[str],
|
|
preds: List[DataSample],
|
|
topk: int = 3,
|
|
figsize: Tuple[int, int] = (16, 9),
|
|
show: bool = False,
|
|
wait_time: int = 0,
|
|
draw_score=True,
|
|
show_dir=None):
|
|
if not show and show_dir is None:
|
|
return None
|
|
|
|
if self.visualizer is None:
|
|
from mmpretrain.visualization import UniversalVisualizer
|
|
self.visualizer = UniversalVisualizer()
|
|
|
|
visualization = []
|
|
for i, (text, data_sample) in enumerate(zip(ori_inputs, preds)):
|
|
name = str(i)
|
|
|
|
if show_dir is not None:
|
|
show_dir = Path(show_dir)
|
|
show_dir.mkdir(exist_ok=True)
|
|
out_file = str((show_dir / name).with_suffix('.png'))
|
|
else:
|
|
out_file = None
|
|
|
|
self.visualizer.visualize_t2i_retrieval(
|
|
text,
|
|
data_sample,
|
|
self.prototype_dataset,
|
|
topk=topk,
|
|
fig_cfg=dict(figsize=figsize),
|
|
draw_score=draw_score,
|
|
show=show,
|
|
wait_time=wait_time,
|
|
name=name,
|
|
out_file=out_file)
|
|
visualization.append(self.visualizer.get_image())
|
|
if show:
|
|
self.visualizer.close()
|
|
return visualization
|
|
|
|
def postprocess(
|
|
self,
|
|
preds: List[DataSample],
|
|
visualization: List[np.ndarray],
|
|
return_datasamples=False,
|
|
topk=1,
|
|
) -> dict:
|
|
if return_datasamples:
|
|
return preds
|
|
|
|
results = []
|
|
for data_sample in preds:
|
|
match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
|
|
matches = []
|
|
for match_score, sample_idx in zip(match_scores, indices):
|
|
sample = self.prototype_dataset.get_data_info(
|
|
sample_idx.item())
|
|
sample_idx = sample.pop('sample_idx')
|
|
matches.append({
|
|
'match_score': match_score,
|
|
'sample_idx': sample_idx,
|
|
'sample': sample
|
|
})
|
|
results.append(matches)
|
|
|
|
return results
|
|
|
|
@staticmethod
|
|
def list_models(pattern: Optional[str] = None):
|
|
"""List all available model names.
|
|
|
|
Args:
|
|
pattern (str | None): A wildcard pattern to match model names.
|
|
|
|
Returns:
|
|
List[str]: a list of model names.
|
|
"""
|
|
return list_models(pattern=pattern, task='Text-To-Image Retrieval')
|
|
|
|
|
|
class ImageToTextRetrievalInferencer(BaseInferencer):
|
|
"""The inferencer for image to text retrieval.
|
|
|
|
Args:
|
|
model (BaseModel | str | Config): A model name or a path to the config
|
|
file, or a :obj:`BaseModel` object. The model name can be found
|
|
by ``ImageToTextRetrievalInferencer.list_models()`` and you can
|
|
also query it in :doc:`/modelzoo_statistics`.
|
|
prototype (str | list | dict | DataLoader, BaseDataset): The images to
|
|
be retrieved. It can be the following types:
|
|
|
|
- str: The file path to load the string list.
|
|
- list: A list of string.
|
|
|
|
prototype_cache (str, optional): The path of the generated prototype
|
|
features. If exists, directly load the cache instead of re-generate
|
|
the prototype features. If not exists, save the generated features
|
|
to the path. Defaults to None.
|
|
fast_match (bool): Some algorithms will record extra image features for
|
|
further matching, which may consume large memory, set True to avoid
|
|
this behavior. Defaults to True.
|
|
pretrained (str, optional): Path to the checkpoint. If None, it will
|
|
try to find a pre-defined weight from the model you specified
|
|
(only work if the ``model`` is a model name). Defaults to None.
|
|
device (str, optional): Device to run inference. If None, the available
|
|
device will be automatically used. Defaults to None.
|
|
**kwargs: Other keyword arguments to initialize the model (only work if
|
|
the ``model`` is a model name).
|
|
|
|
Example:
|
|
>>> from mmpretrain import ImageToTextRetrievalInferencer
|
|
>>> inferencer = ImageToTextRetrievalInferencer(
|
|
... 'blip-base_3rdparty_retrieval',
|
|
... prototype=['cat', 'dog', 'snake', 'bird'],
|
|
... prototype_cache='i2t_retri.pth')
|
|
>>> inferencer('demo/bird.JPEG')[0]
|
|
{'match_score': tensor(0.3855, device='cuda:0'),
|
|
'sample_idx': 1,
|
|
'sample': {'img_path': './demo/cat-dog.png'}}
|
|
""" # noqa: E501
|
|
|
|
visualize_kwargs: set = {
|
|
'draw_score', 'resize', 'show_dir', 'show', 'wait_time', 'topk'
|
|
}
|
|
postprocess_kwargs: set = {'topk'}
|
|
|
|
def __init__(self,
|
|
model: ModelType,
|
|
prototype,
|
|
prototype_cache=None,
|
|
fast_match=True,
|
|
prepare_batch_size=8,
|
|
pretrained: Union[bool, str] = True,
|
|
device: Union[str, torch.device, None] = None,
|
|
**kwargs) -> None:
|
|
super().__init__(
|
|
model=model, pretrained=pretrained, device=device, **kwargs)
|
|
|
|
self.img_pipeline, self.text_pipeline = self.pipeline
|
|
|
|
if hasattr(self.model, 'fast_match'):
|
|
self.model.fast_match = fast_match
|
|
|
|
self.prototype_dataset = self._prepare_prototype(
|
|
prototype, cache=prototype_cache, batch_size=prepare_batch_size)
|
|
|
|
def _prepare_prototype(self, prototype, cache=None, batch_size=8):
|
|
from mmengine.dataset import DefaultSampler
|
|
from torch.utils.data import DataLoader
|
|
|
|
def build_dataloader(dataset):
|
|
return DataLoader(
|
|
[
|
|
self.text_pipeline({
|
|
'sample_idx': i,
|
|
'text': text
|
|
}) for i, text in enumerate(dataset)
|
|
],
|
|
batch_size=batch_size,
|
|
collate_fn=default_collate,
|
|
sampler=DefaultSampler(dataset, shuffle=False),
|
|
persistent_workers=False,
|
|
)
|
|
|
|
if isinstance(prototype, str):
|
|
# A file path of a list of string
|
|
dataset = mmengine.list_from_file(prototype)
|
|
elif mmengine.utils.is_seq_of(prototype, str):
|
|
dataset = prototype
|
|
else:
|
|
raise TypeError(f'Unsupported prototype type {type(prototype)}.')
|
|
|
|
dataloader = build_dataloader(dataset)
|
|
|
|
if cache is not None and Path(cache).exists():
|
|
self.prototype = torch.load(cache)
|
|
else:
|
|
prototype = []
|
|
for data_batch in track(dataloader, 'Prepare prototype...'):
|
|
with torch.no_grad():
|
|
data_batch = self.model.data_preprocessor(
|
|
data_batch, False)
|
|
feats = self.model._run_forward(data_batch, mode='tensor')
|
|
prototype.append(feats)
|
|
prototype = {
|
|
k: torch.cat([d[k] for d in prototype])
|
|
for k in prototype[0]
|
|
}
|
|
self.prototype = prototype
|
|
|
|
from mmengine.logging import MMLogger
|
|
logger = MMLogger.get_current_instance()
|
|
if cache is None:
|
|
logger.info('The prototype has been prepared, you can use '
|
|
'`save_prototype` to dump it into a pickle '
|
|
'file for the future usage.')
|
|
elif not Path(cache).exists():
|
|
self.save_prototype(cache)
|
|
logger.info(f'The prototype has been saved at {cache}.')
|
|
|
|
return dataset
|
|
|
|
def save_prototype(self, path):
|
|
torch.save(self.prototype, path)
|
|
|
|
def __call__(self,
|
|
inputs: ImageType,
|
|
return_datasamples: bool = False,
|
|
batch_size: int = 1,
|
|
**kwargs) -> dict:
|
|
"""Call the inferencer.
|
|
|
|
Args:
|
|
inputs (str | array | list): The image path or array, or a list of
|
|
images.
|
|
return_datasamples (bool): Whether to return results as
|
|
:obj:`DataSample`. Defaults to False.
|
|
batch_size (int): Batch size. Defaults to 1.
|
|
resize (int, optional): Resize the long edge of the image to the
|
|
specified length before visualization. Defaults to None.
|
|
draw_score (bool): Whether to draw the match scores.
|
|
Defaults to True.
|
|
show (bool): Whether to display the visualization result in a
|
|
window. Defaults to False.
|
|
wait_time (float): The display time (s). Defaults to 0, which means
|
|
"forever".
|
|
show_dir (str, optional): If not None, save the visualization
|
|
results in the specified directory. Defaults to None.
|
|
|
|
Returns:
|
|
list: The inference results.
|
|
"""
|
|
return super().__call__(inputs, return_datasamples, batch_size,
|
|
**kwargs)
|
|
|
|
@torch.no_grad()
|
|
def forward(self, data: dict, **kwargs):
|
|
"""Feed the inputs to the model."""
|
|
data = self.model.data_preprocessor(data, False)
|
|
feats = self.prototype.copy()
|
|
feats.update(self.model.extract_feat(images=data['images']))
|
|
return self.model.predict_all(
|
|
feats, data['data_samples'], cal_t2i=False)[0]
|
|
|
|
def _init_pipeline(self, cfg: Config) -> Callable:
|
|
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
|
test_transfroms = [TRANSFORMS.build(t) for t in test_pipeline_cfg]
|
|
img_info = {'img': np.zeros((224, 224, 3), dtype=np.uint8)}
|
|
text_info = {'text': 'example'}
|
|
img_pipeline = Compose(filter_transforms(test_transfroms, img_info))
|
|
text_pipeline = Compose(filter_transforms(test_transfroms, text_info))
|
|
return img_pipeline, text_pipeline
|
|
|
|
def preprocess(self, inputs: List[ImageType], batch_size: int = 1):
|
|
|
|
def load_image(input_):
|
|
img = imread(input_)
|
|
if img is None:
|
|
raise ValueError(f'Failed to read image {input_}.')
|
|
return dict(
|
|
img=img,
|
|
img_shape=img.shape[:2],
|
|
ori_shape=img.shape[:2],
|
|
)
|
|
|
|
pipeline = Compose([load_image, self.img_pipeline])
|
|
|
|
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
|
|
yield from map(default_collate, chunked_data)
|
|
|
|
def visualize(self,
|
|
ori_inputs: List[ImageType],
|
|
preds: List[DataSample],
|
|
topk: int = 3,
|
|
resize: Optional[int] = 224,
|
|
show: bool = False,
|
|
wait_time: int = 0,
|
|
draw_score=True,
|
|
show_dir=None):
|
|
if not show and show_dir is None:
|
|
return None
|
|
|
|
if self.visualizer is None:
|
|
from mmpretrain.visualization import UniversalVisualizer
|
|
self.visualizer = UniversalVisualizer()
|
|
|
|
visualization = []
|
|
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
|
|
image = imread(input_)
|
|
if isinstance(input_, str):
|
|
# The image loaded from path is BGR format.
|
|
image = image[..., ::-1]
|
|
name = Path(input_).stem
|
|
else:
|
|
name = str(i)
|
|
|
|
if show_dir is not None:
|
|
show_dir = Path(show_dir)
|
|
show_dir.mkdir(exist_ok=True)
|
|
out_file = str((show_dir / name).with_suffix('.png'))
|
|
else:
|
|
out_file = None
|
|
|
|
self.visualizer.visualize_i2t_retrieval(
|
|
image,
|
|
data_sample,
|
|
self.prototype_dataset,
|
|
topk=topk,
|
|
resize=resize,
|
|
draw_score=draw_score,
|
|
show=show,
|
|
wait_time=wait_time,
|
|
name=name,
|
|
out_file=out_file)
|
|
visualization.append(self.visualizer.get_image())
|
|
if show:
|
|
self.visualizer.close()
|
|
return visualization
|
|
|
|
def postprocess(
|
|
self,
|
|
preds: List[DataSample],
|
|
visualization: List[np.ndarray],
|
|
return_datasamples=False,
|
|
topk=1,
|
|
) -> dict:
|
|
if return_datasamples:
|
|
return preds
|
|
|
|
results = []
|
|
for data_sample in preds:
|
|
match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
|
|
matches = []
|
|
for match_score, sample_idx in zip(match_scores, indices):
|
|
text = self.prototype_dataset[sample_idx.item()]
|
|
matches.append({
|
|
'match_score': match_score,
|
|
'sample_idx': sample_idx,
|
|
'text': text
|
|
})
|
|
results.append(matches)
|
|
|
|
return results
|
|
|
|
@staticmethod
|
|
def list_models(pattern: Optional[str] = None):
|
|
"""List all available model names.
|
|
|
|
Args:
|
|
pattern (str | None): A wildcard pattern to match model names.
|
|
|
|
Returns:
|
|
List[str]: a list of model names.
|
|
"""
|
|
return list_models(pattern=pattern, task='Image-To-Text Retrieval')
|