mmclassification/mmcls/datasets/transforms/formatting.py

222 lines
6.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections.abc import Sequence
import numpy as np
import torch
from mmcv.transforms import BaseTransform
from mmengine.utils import is_str
from PIL import Image
from mmcls.registry import TRANSFORMS
from mmcls.structures import ClsDataSample
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(
f'Type {type(data)} cannot be converted to tensor.'
'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
'`Sequence`, `int` and `float`')
@TRANSFORMS.register_module()
class PackClsInputs(BaseTransform):
"""Pack the inputs data for the classification.
**Required Keys:**
- img
- gt_label (optional)
- ``*meta_keys`` (optional)
**Deleted Keys:**
All keys in the dict.
**Added Keys:**
- inputs (:obj:`torch.Tensor`): The forward data of models.
- data_samples (:obj:`~mmcls.structures.ClsDataSample`): The annotation
info of the sample.
Args:
meta_keys (Sequence[str]): The meta keys to be saved in the
``metainfo`` of the packed ``data_samples``.
Defaults to a tuple includes keys:
- ``sample_idx``: The id of the image sample.
- ``img_path``: The path to the image file.
- ``ori_shape``: The original shape of the image as a tuple (H, W).
- ``img_shape``: The shape of the image after the pipeline as a
tuple (H, W).
- ``scale_factor``: The scale factor between the resized image and
the original image.
- ``flip``: A boolean indicating if image flip transform was used.
- ``flip_direction``: The flipping direction.
"""
def __init__(self,
meta_keys=('sample_idx', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')):
self.meta_keys = meta_keys
def transform(self, results: dict) -> dict:
"""Method to pack the input data."""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img = np.ascontiguousarray(img.transpose(2, 0, 1))
packed_results['inputs'] = to_tensor(img)
else:
warnings.warn(
'Cannot get "img" in the input dict of `PackClsInputs`,'
'please make sure `LoadImageFromFile` has been added '
'in the data pipeline or images have been loaded in '
'the dataset.')
data_sample = ClsDataSample()
if 'gt_label' in results:
gt_label = results['gt_label']
data_sample.set_gt_label(gt_label)
img_meta = {k: results[k] for k in self.meta_keys if k in results}
data_sample.set_metainfo(img_meta)
packed_results['data_samples'] = data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(meta_keys={self.meta_keys})'
return repr_str
@TRANSFORMS.register_module()
class Transpose(BaseTransform):
"""Transpose numpy array.
**Required Keys:**
- ``*keys``
**Modified Keys:**
- ``*keys``
Args:
keys (List[str]): The fields to convert to tensor.
order (List[int]): The output dimensions order.
"""
def __init__(self, keys, order):
self.keys = keys
self.order = order
def transform(self, results):
"""Method to transpose array."""
for key in self.keys:
results[key] = results[key].transpose(self.order)
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, order={self.order})'
@TRANSFORMS.register_module()
class ToPIL(BaseTransform):
"""Convert the image from OpenCV format to :obj:`PIL.Image.Image`.
**Required Keys:**
- img
**Modified Keys:**
- img
"""
def transform(self, results):
"""Method to convert images to :obj:`PIL.Image.Image`."""
results['img'] = Image.fromarray(results['img'])
return results
@TRANSFORMS.register_module()
class ToNumpy(BaseTransform):
"""Convert object to :obj:`numpy.ndarray`.
**Required Keys:**
- ``*keys**``
**Modified Keys:**
- ``*keys**``
Args:
dtype (str, optional): The dtype of the converted numpy array.
Defaults to None.
"""
def __init__(self, keys, dtype=None):
self.keys = keys
self.dtype = dtype
def transform(self, results):
"""Method to convert object to :obj:`numpy.ndarray`."""
for key in self.keys:
results[key] = np.array(results[key], dtype=self.dtype)
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, dtype={self.dtype})'
@TRANSFORMS.register_module()
class Collect(BaseTransform):
"""Collect and only reserve the specified fields.
**Required Keys:**
- ``*keys``
**Deleted Keys:**
All keys except those in the argument ``*keys``.
Args:
keys (Sequence[str]): The keys of the fields to be collected.
"""
def __init__(self, keys):
self.keys = keys
def transform(self, results):
data = {}
for key in self.keys:
data[key] = results[key]
return data
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'