Yixiao Fang 08dc8c75d3
[Refactor] Add selfsup algorithms. (#1389)
* remove basehead

* add moco series

* add byol simclr simsiam

* add ut

* update configs

* add simsiam hook

* add and refactor beit

* update ut

* add cae

* update extract_feat

* refactor cae

* add mae

* refactor data preprocessor

* update heads

* add maskfeat

* add milan

* add simmim

* add mixmim

* fix lint

* fix ut

* fix lint

* add eva

* add densecl

* add barlowtwins

* add swav

* fix lint

* update readtherdocs rst

* update docs

* update

* Decrease UT memory usage

* Fix docstring

* update DALLEEncoder

* Update model docs

* refactor dalle encoder

* update docstring

* fix ut

* fix config error

* add val_cfg and test_cfg

* refactor clip generator

* fix lint

* pass check

* fix ut

* add lars

* update type of BEiT in configs

* Use MMEngine style momentum in EMA.

* apply mmpretrain solarize

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-03-06 16:53:15 +08:00

44 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List
import torch
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from .base import BaseSelfSupervisor
@MODELS.register_module()
class SimSiam(BaseSelfSupervisor):
"""SimSiam.
Implementation of `Exploring Simple Siamese Representation Learning
<https://arxiv.org/abs/2011.10566>`_. The operation of fixing learning rate
of predictor is in `engine/hooks/simsiam_hook.py`.
"""
def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
assert isinstance(inputs, list)
img_v1 = inputs[0]
img_v2 = inputs[1]
z1 = self.neck(self.backbone(img_v1))[0] # NxC
z2 = self.neck(self.backbone(img_v2))[0] # NxC
loss_1 = self.head.loss(z1, z2)
loss_2 = self.head.loss(z2, z1)
losses = dict(loss=0.5 * (loss_1 + loss_2))
return losses