mmclassification/configs/deit/deit-tiny_4xb256_in1k.py
Yixiao Fang 89000c10eb
[Refactor] Refactor configs and metafile (#1369)
* update base datasets

* update base

* update barlowtwins

* update with new convention

* update

* update

* update

* add schedule

* add densecl

* add eva

* add mae

* add maskfeat

* add milan and mixmim

* add moco

* add swav simclr

* add simmim and simsiam

* refine

* update

* add to model index

* update config inheritance

* fix error in metafile

* Update pre-commit and metafile check script

* update metafile

* fix name error

* Fix classification model name and config name

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-02-23 11:17:16 +08:00

49 lines
1.2 KiB
Python

# In small and tiny arch, remove drop path and EMA hook comparing with the
# original config
_base_ = [
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='deit-tiny',
img_size=224,
patch_size=16),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=192,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]),
)
# data settings
train_dataloader = dict(batch_size=256)
# schedule settings
optim_wrapper = dict(
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}),
clip_grad=dict(max_norm=5.0),
)