mmclassification/configs/efficientnet_v2/efficientnetv2-s_8xb32_in21...

44 lines
1.1 KiB
Python

_base_ = [
'../_base_/models/efficientnet_v2/efficientnetv2_s.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py',
'../_base_/default_runtime.py',
]
# model setting
model = dict(head=dict(num_classes=21843))
# dataset settings
dataset_type = 'ImageNet21k'
data_preprocessor = dict(
num_classes=21843,
# RGB format normalization parameters
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
# convert image from BGR to RGB
to_rgb=True,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetRandomCrop', scale=224),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='EfficientNetCenterCrop', crop_size=224, crop_padding=0),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
# schedule setting
optim_wrapper = dict(
optimizer=dict(lr=4e-3),
clip_grad=dict(max_norm=5.0),
)