mmclassification/configs/_base_/datasets/imagenet_bs256_beitv2.py
zzc98 bc3c4a35ee
[Refactor] Support to use "split" to specify training set/validation set in the ImageNet dataset (#1535)
* [Feature]: Add caption

* [Feature]: Update scienceqa

* [CI] Add test mim CI. (#879)

* refactor imagenet dataset

* refactor imagenet dataset

* refactor imagenet dataset

* update imagenet21k

* update configs

* update mnist

* update dataset_prepare.md

* fix sun397 url and update user_guides/dataset_prepare.md

* update dataset_prepare.md

* fix sun397 dataset

* fix sun397

* update chinese dataset_prepare.md

* update dataset_prepare.md

* [Refactor] update voc dataset

* [Refactor] update voc dataset

* refactor imagenet

* refactor imagenet

* use mmengine.fileio

---------

Co-authored-by: liuyuan <3463423099@qq.com>
Co-authored-by: Ma Zerun <mzr1996@163.com>
Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
2023-06-02 11:03:18 +08:00

48 lines
1.2 KiB
Python

# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='TwoNormDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
second_mean=[127.5, 127.5, 127.5],
second_std=[127.5, 127.5, 127.5],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandomResizedCropAndInterpolationWithTwoPic',
size=224,
second_size=224,
interpolation='bicubic',
second_interpolation='bicubic',
scale=(0.2, 1.0)),
dict(
type='BEiTMaskGenerator',
input_size=(14, 14),
num_masking_patches=75,
max_num_patches=75,
min_num_patches=16),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=256,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))