Ma Zerun 6847d20d57
[Feature] Support multiple multi-modal algorithms and inferencers. (#1561)
* [Feat] Migrate blip caption to mmpretrain. (#50)

* Migrate blip caption to mmpretrain

* minor fix

* support train

* [Feature] Support OFA caption task. (#51)

* [Feature] Support OFA caption task.

* Remove duplicated files.

* [Feature] Support OFA vqa task. (#58)

* [Feature] Support OFA vqa task.

* Fix lint.

* [Feat] Add BLIP retrieval to mmpretrain. (#55)

* init

* minor fix for train

* fix according to comments

* refactor

* Update Blip retrieval. (#62)

* [Feature] Support OFA visual grounding task. (#59)

* [Feature] Support OFA visual grounding task.

* minor add TODO

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Add flamingos coco caption and vqa. (#60)

* first init

* init flamingo coco

* add vqa

* minor fix

* remove unnecessary modules

* Update config

* Use `ApplyToList`.

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 coco retrieval  (#53)

* [Feature]: Add blip2 retriever

* [Feature]: Add blip2 all modules

* [Feature]: Refine model

* [Feature]: x1

* [Feature]: Runnable coco ret

* [Feature]: Runnable version

* [Feature]: Fix lint

* [Fix]: Fix lint

* [Feature]: Use 364 img size

* [Feature]: Refactor blip2

* [Fix]: Fix lint

* refactor files

* minor fix

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Remove

* fix blip caption inputs (#68)

* [Feat] Add BLIP NLVR support. (#67)

* first init

* init flamingo coco

* add vqa

* add nlvr

* refactor nlvr

* minor fix

* minor fix

* Update dataset

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 Caption (#70)

* [Feature]: Add language model

* [Feature]: blip2 caption forward

* [Feature]: Reproduce the results

* [Feature]: Refactor caption

* refine config

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Migrate BLIP VQA to mmpretrain (#69)

* reformat

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* refactor code

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Update RefCOCO dataset

* [Fix] fix lint

* [Feature] Implement inference APIs for multi-modal tasks. (#65)

* [Feature] Implement inference APIs for multi-modal tasks.

* [Project] Add gradio demo.

* [Improve] Update requirements

* Update flamingo

* Update blip

* Add NLVR inferencer

* Update flamingo

* Update hugging face model register

* Update ofa vqa

* Update BLIP-vqa (#71)

* Update blip-vqa docstring (#72)

* Refine flamingo docstring (#73)

* [Feature]: BLIP2 VQA (#61)

* [Feature]: VQA forward

* [Feature]: Reproduce accuracy

* [Fix]: Fix lint

* [Fix]: Add blank line

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feature]: BLIP2 docstring (#74)

* [Feature]: Add caption docstring

* [Feature]: Add docstring to blip2 vqa

* [Feature]: Add docstring to retrieval

* Update BLIP-2 metafile and README (#75)

* [Feature]: Add readme and docstring

* Update blip2 results

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature] BLIP Visual Grounding on MMPretrain Branch (#66)

* blip grounding merge with mmpretrain

* remove commit

* blip grounding test and inference api

* refcoco dataset

* refcoco dataset refine config

* rebasing

* gitignore

* rebasing

* minor edit

* minor edit

* Update blip-vqa docstring (#72)

* rebasing

* Revert "minor edit"

This reverts commit 639cec757c215e654625ed0979319e60f0be9044.

* blip grounding final

* precommit

* refine config

* refine config

* Update blip visual grounding

---------

Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: mzr1996 <mzr1996@163.com>

* Update visual grounding metric

* Update OFA docstring, README and metafiles. (#76)

* [Docs] Update installation docs and gradio demo docs. (#77)

* Update OFA name

* Update Visual Grounding Visualizer

* Integrate accelerate support

* Fix imports.

* Fix timm backbone

* Update imports

* Update README

* Update circle ci

* Update flamingo config

* Add gradio demo README

* [Feature]: Add scienceqa (#1571)

* [Feature]: Add scienceqa

* [Feature]: Change param name

* Update docs

* Update video

---------

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
Co-authored-by: yingfhu <yingfhu@gmail.com>
Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00

1245 lines
48 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import inspect
from copy import deepcopy
from math import ceil
from numbers import Number
from typing import List, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
from mmcv.transforms import BaseTransform, Compose, RandomChoice
from mmcv.transforms.utils import cache_randomness
from mmengine.utils import is_list_of, is_seq_of
from PIL import Image, ImageFilter
from mmpretrain.registry import TRANSFORMS
def merge_hparams(policy: dict, hparams: dict) -> dict:
"""Merge hyperparameters into policy config.
Only merge partial hyperparameters required of the policy.
Args:
policy (dict): Original policy config dict.
hparams (dict): Hyperparameters need to be merged.
Returns:
dict: Policy config dict after adding ``hparams``.
"""
policy = deepcopy(policy)
op = TRANSFORMS.get(policy['type'])
assert op is not None, f'Invalid policy type "{policy["type"]}".'
op_args = inspect.getfullargspec(op.__init__).args
for key, value in hparams.items():
if key in op_args and key not in policy:
policy[key] = value
return policy
@TRANSFORMS.register_module()
class AutoAugment(RandomChoice):
"""Auto augmentation.
This data augmentation is proposed in `AutoAugment: Learning Augmentation
Policies from Data <https://arxiv.org/abs/1805.09501>`_.
Args:
policies (str | list[list[dict]]): The policies of auto augmentation.
If string, use preset policies collection like "imagenet". If list,
Each item is a sub policies, composed by several augmentation
policy dicts. When AutoAugment is called, a random sub policies in
``policies`` will be selected to augment images.
hparams (dict): Configs of hyperparameters. Hyperparameters will be
used in policies that require these arguments if these arguments
are not set in policy dicts. Defaults to ``dict(pad_val=128)``.
.. admonition:: Available preset policies
- ``"imagenet"``: Policy for ImageNet, come from
`DeepVoltaire/AutoAugment`_
.. _DeepVoltaire/AutoAugment: https://github.com/DeepVoltaire/AutoAugment
"""
def __init__(self,
policies: Union[str, List[List[dict]]],
hparams: dict = dict(pad_val=128)):
if isinstance(policies, str):
assert policies in AUTOAUG_POLICIES, 'Invalid policies, ' \
f'please choose from {list(AUTOAUG_POLICIES.keys())}.'
policies = AUTOAUG_POLICIES[policies]
self.hparams = hparams
self.policies = [[merge_hparams(t, hparams) for t in sub]
for sub in policies]
transforms = [[TRANSFORMS.build(t) for t in sub] for sub in policies]
super().__init__(transforms=transforms)
def __repr__(self) -> str:
policies_str = ''
for sub in self.policies:
policies_str += '\n ' + ', \t'.join([t['type'] for t in sub])
repr_str = self.__class__.__name__
repr_str += f'(policies:{policies_str}\n)'
return repr_str
@TRANSFORMS.register_module()
class RandAugment(BaseTransform):
r"""Random augmentation.
This data augmentation is proposed in `RandAugment: Practical automated
data augmentation with a reduced search space
<https://arxiv.org/abs/1909.13719>`_.
Args:
policies (str | list[dict]): The policies of random augmentation.
If string, use preset policies collection like "timm_increasing".
If list, each item is one specific augmentation policy dict.
The policy dict shall should have these keys:
- ``type`` (str), The type of augmentation.
- ``magnitude_range`` (Sequence[number], optional): For those
augmentation have magnitude, you need to specify the magnitude
level mapping range. For example, assume ``total_level`` is 10,
``magnitude_level=3`` specify magnitude is 3 if
``magnitude_range=(0, 10)`` while specify magnitude is 7 if
``magnitude_range=(10, 0)``.
- other keyword arguments of the augmentation.
num_policies (int): Number of policies to select from policies each
time.
magnitude_level (int | float): Magnitude level for all the augmentation
selected.
magnitude_std (Number | str): Deviation of magnitude noise applied.
- If positive number, the magnitude obeys normal distribution
:math:`\mathcal{N}(magnitude_level, magnitude_std)`.
- If 0 or negative number, magnitude remains unchanged.
- If str "inf", the magnitude obeys uniform distribution
:math:`Uniform(min, magnitude)`.
total_level (int | float): Total level for the magnitude. Defaults to
10.
hparams (dict): Configs of hyperparameters. Hyperparameters will be
used in policies that require these arguments if these arguments
are not set in policy dicts. Defaults to ``dict(pad_val=128)``.
.. admonition:: Available preset policies
- ``"timm_increasing"``: The ``_RAND_INCREASING_TRANSFORMS`` policy
from `timm`_
.. _timm: https://github.com/rwightman/pytorch-image-models
Examples:
To use "timm-increasing" policies collection, select two policies every
time, and magnitude_level of every policy is 6 (total is 10 by default)
>>> import numpy as np
>>> from mmpretrain.datasets import RandAugment
>>> transform = RandAugment(
... policies='timm_increasing',
... num_policies=2,
... magnitude_level=6,
... )
>>> data = {'img': np.random.randint(0, 256, (224, 224, 3))}
>>> results = transform(data)
>>> print(results['img'].shape)
(224, 224, 3)
If you want the ``magnitude_level`` randomly changes every time, you
can use ``magnitude_std`` to specify the random distribution. For
example, a normal distribution :math:`\mathcal{N}(6, 0.5)`.
>>> transform = RandAugment(
... policies='timm_increasing',
... num_policies=2,
... magnitude_level=6,
... magnitude_std=0.5,
... )
You can also use your own policies:
>>> policies = [
... dict(type='AutoContrast'),
... dict(type='Rotate', magnitude_range=(0, 30)),
... dict(type='ColorTransform', magnitude_range=(0, 0.9)),
... ]
>>> transform = RandAugment(
... policies=policies,
... num_policies=2,
... magnitude_level=6
... )
Note:
``magnitude_std`` will introduce some randomness to policy, modified by
https://github.com/rwightman/pytorch-image-models.
When magnitude_std=0, we calculate the magnitude as follows:
.. math::
\text{magnitude} = \frac{\text{magnitude_level}}
{\text{totallevel}} \times (\text{val2} - \text{val1})
+ \text{val1}
"""
def __init__(self,
policies: Union[str, List[dict]],
num_policies: int,
magnitude_level: int,
magnitude_std: Union[Number, str] = 0.,
total_level: int = 10,
hparams: dict = dict(pad_val=128)):
if isinstance(policies, str):
assert policies in RANDAUG_POLICIES, 'Invalid policies, ' \
f'please choose from {list(RANDAUG_POLICIES.keys())}.'
policies = RANDAUG_POLICIES[policies]
assert is_list_of(policies, dict), 'policies must be a list of dict.'
assert isinstance(magnitude_std, (Number, str)), \
'`magnitude_std` must be of number or str type, ' \
f'got {type(magnitude_std)} instead.'
if isinstance(magnitude_std, str):
assert magnitude_std == 'inf', \
'`magnitude_std` must be of number or "inf", ' \
f'got "{magnitude_std}" instead.'
assert num_policies > 0, 'num_policies must be greater than 0.'
assert magnitude_level >= 0, 'magnitude_level must be no less than 0.'
assert total_level > 0, 'total_level must be greater than 0.'
self.num_policies = num_policies
self.magnitude_level = magnitude_level
self.magnitude_std = magnitude_std
self.total_level = total_level
self.hparams = hparams
self.policies = []
self.transforms = []
randaug_cfg = dict(
magnitude_level=magnitude_level,
total_level=total_level,
magnitude_std=magnitude_std)
for policy in policies:
self._check_policy(policy)
policy = merge_hparams(policy, hparams)
policy.pop('magnitude_key', None) # For backward compatibility
if 'magnitude_range' in policy:
policy.update(randaug_cfg)
self.policies.append(policy)
self.transforms.append(TRANSFORMS.build(policy))
def __iter__(self):
"""Iterate all transforms."""
return iter(self.transforms)
def _check_policy(self, policy):
"""Check whether the sub-policy dict is available."""
assert isinstance(policy, dict) and 'type' in policy, \
'Each policy must be a dict with key "type".'
type_name = policy['type']
if 'magnitude_range' in policy:
magnitude_range = policy['magnitude_range']
assert is_seq_of(magnitude_range, Number), \
f'`magnitude_range` of RandAugment policy {type_name} ' \
'should be a sequence with two numbers.'
@cache_randomness
def random_policy_indices(self) -> np.ndarray:
"""Return the random chosen transform indices."""
indices = np.arange(len(self.policies))
return np.random.choice(indices, size=self.num_policies).tolist()
def transform(self, results: dict) -> Optional[dict]:
"""Randomly choose a sub-policy to apply."""
chosen_policies = [
self.transforms[i] for i in self.random_policy_indices()
]
sub_pipeline = Compose(chosen_policies)
return sub_pipeline(results)
def __repr__(self) -> str:
policies_str = ''
for policy in self.policies:
policies_str += '\n ' + f'{policy["type"]}'
if 'magnitude_range' in policy:
val1, val2 = policy['magnitude_range']
policies_str += f' ({val1}, {val2})'
repr_str = self.__class__.__name__
repr_str += f'(num_policies={self.num_policies}, '
repr_str += f'magnitude_level={self.magnitude_level}, '
repr_str += f'total_level={self.total_level}, '
repr_str += f'policies:{policies_str}\n)'
return repr_str
class BaseAugTransform(BaseTransform):
r"""The base class of augmentation transform for RandAugment.
This class provides several common attributions and methods to support the
magnitude level mapping and magnitude level randomness in
:class:`RandAugment`.
Args:
magnitude_level (int | float): Magnitude level.
magnitude_range (Sequence[number], optional): For augmentation have
magnitude argument, maybe "magnitude", "angle" or other, you can
specify the magnitude level mapping range to generate the magnitude
argument. For example, assume ``total_level`` is 10,
``magnitude_level=3`` specify magnitude is 3 if
``magnitude_range=(0, 10)`` while specify magnitude is 7 if
``magnitude_range=(10, 0)``. Defaults to None.
magnitude_std (Number | str): Deviation of magnitude noise applied.
- If positive number, the magnitude obeys normal distribution
:math:`\mathcal{N}(magnitude, magnitude_std)`.
- If 0 or negative number, magnitude remains unchanged.
- If str "inf", the magnitude obeys uniform distribution
:math:`Uniform(min, magnitude)`.
Defaults to 0.
total_level (int | float): Total level for the magnitude. Defaults to
10.
prob (float): The probability for performing transformation therefore
should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.
"""
def __init__(self,
magnitude_level: int = 10,
magnitude_range: Tuple[float, float] = None,
magnitude_std: Union[str, float] = 0.,
total_level: int = 10,
prob: float = 0.5,
random_negative_prob: float = 0.5):
self.magnitude_level = magnitude_level
self.magnitude_range = magnitude_range
self.magnitude_std = magnitude_std
self.total_level = total_level
self.prob = prob
self.random_negative_prob = random_negative_prob
@cache_randomness
def random_disable(self):
"""Randomly disable the transform."""
return np.random.rand() > self.prob
@cache_randomness
def random_magnitude(self):
"""Randomly generate magnitude."""
magnitude = self.magnitude_level
# if magnitude_std is positive number or 'inf', move
# magnitude_value randomly.
if self.magnitude_std == 'inf':
magnitude = np.random.uniform(0, magnitude)
elif self.magnitude_std > 0:
magnitude = np.random.normal(magnitude, self.magnitude_std)
magnitude = np.clip(magnitude, 0, self.total_level)
val1, val2 = self.magnitude_range
magnitude = (magnitude / self.total_level) * (val2 - val1) + val1
return magnitude
@cache_randomness
def random_negative(self, value):
"""Randomly negative the value."""
if np.random.rand() < self.random_negative_prob:
return -value
else:
return value
def extra_repr(self):
"""Extra repr string when auto-generating magnitude is enabled."""
if self.magnitude_range is not None:
repr_str = f', magnitude_level={self.magnitude_level}, '
repr_str += f'magnitude_range={self.magnitude_range}, '
repr_str += f'magnitude_std={self.magnitude_std}, '
repr_str += f'total_level={self.total_level}, '
return repr_str
else:
return ''
@TRANSFORMS.register_module()
class Shear(BaseAugTransform):
"""Shear images.
Args:
magnitude (int | float | None): The magnitude used for shear. If None,
generate from ``magnitude_range``, see :class:`BaseAugTransform`.
Defaults to None.
pad_val (int, Sequence[int]): Pixel pad_val value for constant fill.
If a sequence of length 3, it is used to pad_val R, G, B channels
respectively. Defaults to 128.
prob (float): The probability for performing shear therefore should be
in range [0, 1]. Defaults to 0.5.
direction (str): The shearing direction. Options are 'horizontal' and
'vertical'. Defaults to 'horizontal'.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
interpolation (str): Interpolation method. Options are 'nearest',
'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'bicubic'.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
pad_val: Union[int, Sequence[int]] = 128,
prob: float = 0.5,
direction: str = 'horizontal',
random_negative_prob: float = 0.5,
interpolation: str = 'bicubic',
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
if isinstance(pad_val, Sequence):
self.pad_val = tuple(pad_val)
else:
self.pad_val = pad_val
assert direction in ('horizontal', 'vertical'), 'direction must be ' \
f'either "horizontal" or "vertical", got "{direction}" instead.'
self.direction = direction
self.interpolation = interpolation
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
img_sheared = mmcv.imshear(
img,
magnitude,
direction=self.direction,
border_value=self.pad_val,
interpolation=self.interpolation)
results['img'] = img_sheared.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob}, '
repr_str += f'direction={self.direction}, '
repr_str += f'random_negative_prob={self.random_negative_prob}, '
repr_str += f'interpolation={self.interpolation}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Translate(BaseAugTransform):
"""Translate images.
Args:
magnitude (int | float | None): The magnitude used for translate. Note
that the offset is calculated by magnitude * size in the
corresponding direction. With a magnitude of 1, the whole image
will be moved out of the range. If None, generate from
``magnitude_range``, see :class:`BaseAugTransform`.
pad_val (int, Sequence[int]): Pixel pad_val value for constant fill.
If a sequence of length 3, it is used to pad_val R, G, B channels
respectively. Defaults to 128.
prob (float): The probability for performing translate therefore should
be in range [0, 1]. Defaults to 0.5.
direction (str): The translating direction. Options are 'horizontal'
and 'vertical'. Defaults to 'horizontal'.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
interpolation (str): Interpolation method. Options are 'nearest',
'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
pad_val: Union[int, Sequence[int]] = 128,
prob: float = 0.5,
direction: str = 'horizontal',
random_negative_prob: float = 0.5,
interpolation: str = 'nearest',
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
if isinstance(pad_val, Sequence):
self.pad_val = tuple(pad_val)
else:
self.pad_val = pad_val
assert direction in ('horizontal', 'vertical'), 'direction must be ' \
f'either "horizontal" or "vertical", got "{direction}" instead.'
self.direction = direction
self.interpolation = interpolation
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
height, width = img.shape[:2]
if self.direction == 'horizontal':
offset = magnitude * width
else:
offset = magnitude * height
img_translated = mmcv.imtranslate(
img,
offset,
direction=self.direction,
border_value=self.pad_val,
interpolation=self.interpolation)
results['img'] = img_translated.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob}, '
repr_str += f'direction={self.direction}, '
repr_str += f'random_negative_prob={self.random_negative_prob}, '
repr_str += f'interpolation={self.interpolation}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Rotate(BaseAugTransform):
"""Rotate images.
Args:
angle (float, optional): The angle used for rotate. Positive values
stand for clockwise rotation. If None, generate from
``magnitude_range``, see :class:`BaseAugTransform`.
Defaults to None.
center (tuple[float], optional): Center point (w, h) of the rotation in
the source image. If None, the center of the image will be used.
Defaults to None.
scale (float): Isotropic scale factor. Defaults to 1.0.
pad_val (int, Sequence[int]): Pixel pad_val value for constant fill.
If a sequence of length 3, it is used to pad_val R, G, B channels
respectively. Defaults to 128.
prob (float): The probability for performing rotate therefore should be
in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the angle
negative, which should be in range [0,1]. Defaults to 0.5.
interpolation (str): Interpolation method. Options are 'nearest',
'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
angle: Optional[float] = None,
center: Optional[Tuple[float]] = None,
scale: float = 1.0,
pad_val: Union[int, Sequence[int]] = 128,
prob: float = 0.5,
random_negative_prob: float = 0.5,
interpolation: str = 'nearest',
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (angle is None) ^ (self.magnitude_range is None), \
'Please specify only one of `angle` and `magnitude_range`.'
self.angle = angle
self.center = center
self.scale = scale
if isinstance(pad_val, Sequence):
self.pad_val = tuple(pad_val)
else:
self.pad_val = pad_val
self.interpolation = interpolation
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.angle is not None:
angle = self.random_negative(self.angle)
else:
angle = self.random_negative(self.random_magnitude())
img = results['img']
img_rotated = mmcv.imrotate(
img,
angle,
center=self.center,
scale=self.scale,
border_value=self.pad_val,
interpolation=self.interpolation)
results['img'] = img_rotated.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(angle={self.angle}, '
repr_str += f'center={self.center}, '
repr_str += f'scale={self.scale}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob}, '
repr_str += f'interpolation={self.interpolation}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class AutoContrast(BaseAugTransform):
"""Auto adjust image contrast.
Args:
prob (float): The probability for performing auto contrast
therefore should be in range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self, prob: float = 0.5, **kwargs):
super().__init__(prob=prob, **kwargs)
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
img = results['img']
img_contrasted = mmcv.auto_contrast(img)
results['img'] = img_contrasted.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class Invert(BaseAugTransform):
"""Invert images.
Args:
prob (float): The probability for performing invert therefore should
be in range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self, prob: float = 0.5, **kwargs):
super().__init__(prob=prob, **kwargs)
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
img = results['img']
img_inverted = mmcv.iminvert(img)
results['img'] = img_inverted.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class Equalize(BaseAugTransform):
"""Equalize the image histogram.
Args:
prob (float): The probability for performing equalize therefore should
be in range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self, prob: float = 0.5, **kwargs):
super().__init__(prob=prob, **kwargs)
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
img = results['img']
img_equalized = mmcv.imequalize(img)
results['img'] = img_equalized.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class Solarize(BaseAugTransform):
"""Solarize images (invert all pixel values above a threshold).
Args:
thr (int | float | None): The threshold above which the pixels value
will be inverted. If None, generate from ``magnitude_range``,
see :class:`BaseAugTransform`. Defaults to None.
prob (float): The probability for solarizing therefore should be in
range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
thr: Union[int, float, None] = None,
prob: float = 0.5,
**kwargs):
super().__init__(prob=prob, random_negative_prob=0., **kwargs)
assert (thr is None) ^ (self.magnitude_range is None), \
'Please specify only one of `thr` and `magnitude_range`.'
self.thr = thr
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.thr is not None:
thr = self.thr
else:
thr = self.random_magnitude()
img = results['img']
img_solarized = mmcv.solarize(img, thr=thr)
results['img'] = img_solarized.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(thr={self.thr}, '
repr_str += f'prob={self.prob}{self.extra_repr()}))'
return repr_str
@TRANSFORMS.register_module()
class SolarizeAdd(BaseAugTransform):
"""SolarizeAdd images (add a certain value to pixels below a threshold).
Args:
magnitude (int | float | None): The value to be added to pixels below
the thr. If None, generate from ``magnitude_range``, see
:class:`BaseAugTransform`. Defaults to None.
thr (int | float): The threshold below which the pixels value will be
adjusted.
prob (float): The probability for solarizing therefore should be in
range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
thr: Union[int, float] = 128,
prob: float = 0.5,
**kwargs):
super().__init__(prob=prob, random_negative_prob=0., **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
assert isinstance(thr, (int, float)), 'The thr type must '\
f'be int or float, but got {type(thr)} instead.'
self.thr = thr
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.magnitude
else:
magnitude = self.random_magnitude()
img = results['img']
img_solarized = np.where(img < self.thr,
np.minimum(img + magnitude, 255), img)
results['img'] = img_solarized.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'thr={self.thr}, '
repr_str += f'prob={self.prob}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Posterize(BaseAugTransform):
"""Posterize images (reduce the number of bits for each color channel).
Args:
bits (int, optional): Number of bits for each pixel in the output img,
which should be less or equal to 8. If None, generate from
``magnitude_range``, see :class:`BaseAugTransform`.
Defaults to None.
prob (float): The probability for posterizing therefore should be in
range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
bits: Optional[int] = None,
prob: float = 0.5,
**kwargs):
super().__init__(prob=prob, random_negative_prob=0., **kwargs)
assert (bits is None) ^ (self.magnitude_range is None), \
'Please specify only one of `bits` and `magnitude_range`.'
if bits is not None:
assert bits <= 8, \
f'The bits must be less than 8, got {bits} instead.'
self.bits = bits
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.bits is not None:
bits = self.bits
else:
bits = self.random_magnitude()
# To align timm version, we need to round up to integer here.
bits = ceil(bits)
img = results['img']
img_posterized = mmcv.posterize(img, bits=bits)
results['img'] = img_posterized.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(bits={self.bits}, '
repr_str += f'prob={self.prob}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Contrast(BaseAugTransform):
"""Adjust images contrast.
Args:
magnitude (int | float | None): The magnitude used for adjusting
contrast. A positive magnitude would enhance the contrast and
a negative magnitude would make the image grayer. A magnitude=0
gives the origin img. If None, generate from ``magnitude_range``,
see :class:`BaseAugTransform`. Defaults to None.
prob (float): The probability for performing contrast adjusting
therefore should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
prob: float = 0.5,
random_negative_prob: float = 0.5,
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
img_contrasted = mmcv.adjust_contrast(img, factor=1 + magnitude)
results['img'] = img_contrasted.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob}'
repr_str += f'{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class ColorTransform(BaseAugTransform):
"""Adjust images color balance.
Args:
magnitude (int | float | None): The magnitude used for color transform.
A positive magnitude would enhance the color and a negative
magnitude would make the image grayer. A magnitude=0 gives the
origin img. If None, generate from ``magnitude_range``, see
:class:`BaseAugTransform`. Defaults to None.
prob (float): The probability for performing ColorTransform therefore
should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
prob: float = 0.5,
random_negative_prob: float = 0.5,
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
img_color_adjusted = mmcv.adjust_color(img, alpha=1 + magnitude)
results['img'] = img_color_adjusted.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob}'
repr_str += f'{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Brightness(BaseAugTransform):
"""Adjust images brightness.
Args:
magnitude (int | float | None): The magnitude used for adjusting
brightness. A positive magnitude would enhance the brightness and a
negative magnitude would make the image darker. A magnitude=0 gives
the origin img. If None, generate from ``magnitude_range``, see
:class:`BaseAugTransform`. Defaults to None.
prob (float): The probability for performing brightness adjusting
therefore should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
prob: float = 0.5,
random_negative_prob: float = 0.5,
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
img_brightened = mmcv.adjust_brightness(img, factor=1 + magnitude)
results['img'] = img_brightened.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob}'
repr_str += f'{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Sharpness(BaseAugTransform):
"""Adjust images sharpness.
Args:
magnitude (int | float | None): The magnitude used for adjusting
sharpness. A positive magnitude would enhance the sharpness and a
negative magnitude would make the image bulr. A magnitude=0 gives
the origin img. If None, generate from ``magnitude_range``, see
:class:`BaseAugTransform`. Defaults to None.
prob (float): The probability for performing sharpness adjusting
therefore should be in range [0, 1]. Defaults to 0.5.
random_negative_prob (float): The probability that turns the magnitude
negative, which should be in range [0,1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
magnitude: Union[int, float, None] = None,
prob: float = 0.5,
random_negative_prob: float = 0.5,
**kwargs):
super().__init__(
prob=prob, random_negative_prob=random_negative_prob, **kwargs)
assert (magnitude is None) ^ (self.magnitude_range is None), \
'Please specify only one of `magnitude` and `magnitude_range`.'
self.magnitude = magnitude
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.magnitude is not None:
magnitude = self.random_negative(self.magnitude)
else:
magnitude = self.random_negative(self.random_magnitude())
img = results['img']
img_sharpened = mmcv.adjust_sharpness(img, factor=1 + magnitude)
results['img'] = img_sharpened.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(magnitude={self.magnitude}, '
repr_str += f'prob={self.prob}, '
repr_str += f'random_negative_prob={self.random_negative_prob}'
repr_str += f'{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class Cutout(BaseAugTransform):
"""Cutout images.
Args:
shape (int | tuple(int) | None): Expected cutout shape (h, w).
If given as a single value, the value will be used for both h and
w. If None, generate from ``magnitude_range``, see
:class:`BaseAugTransform`. Defaults to None.
pad_val (int, Sequence[int]): Pixel pad_val value for constant fill.
If it is a sequence, it must have the same length with the image
channels. Defaults to 128.
prob (float): The probability for performing cutout therefore should
be in range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
shape: Union[int, Tuple[int], None] = None,
pad_val: Union[int, Sequence[int]] = 128,
prob: float = 0.5,
**kwargs):
super().__init__(prob=prob, random_negative_prob=0., **kwargs)
assert (shape is None) ^ (self.magnitude_range is None), \
'Please specify only one of `shape` and `magnitude_range`.'
self.shape = shape
if isinstance(pad_val, Sequence):
self.pad_val = tuple(pad_val)
else:
self.pad_val = pad_val
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.shape is not None:
shape = self.shape
else:
shape = int(self.random_magnitude())
img = results['img']
img_cutout = mmcv.cutout(img, shape, pad_val=self.pad_val)
results['img'] = img_cutout.astype(img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(shape={self.shape}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob}{self.extra_repr()})'
return repr_str
@TRANSFORMS.register_module()
class GaussianBlur(BaseAugTransform):
"""Gaussian blur images.
Args:
radius (int, float, optional): The blur radius. If None, generate from
``magnitude_range``, see :class:`BaseAugTransform`.
Defaults to None.
prob (float): The probability for posterizing therefore should be in
range [0, 1]. Defaults to 0.5.
**kwargs: Other keyword arguments of :class:`BaseAugTransform`.
"""
def __init__(self,
radius: Union[int, float, None] = None,
prob: float = 0.5,
**kwargs):
super().__init__(prob=prob, random_negative_prob=0., **kwargs)
assert (radius is None) ^ (self.magnitude_range is None), \
'Please specify only one of `radius` and `magnitude_range`.'
self.radius = radius
def transform(self, results):
"""Apply transform to results."""
if self.random_disable():
return results
if self.radius is not None:
radius = self.radius
else:
radius = self.random_magnitude()
img = results['img']
pil_img = Image.fromarray(img)
pil_img.filter(ImageFilter.GaussianBlur(radius=radius))
results['img'] = np.array(pil_img, dtype=img.dtype)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(radius={self.radius}, '
repr_str += f'prob={self.prob}{self.extra_repr()})'
return repr_str
# yapf: disable
# flake8: noqa
AUTOAUG_POLICIES = {
# Policy for ImageNet, refers to
# https://github.com/DeepVoltaire/AutoAugment/blame/master/autoaugment.py
'imagenet': [
[dict(type='Posterize', bits=4, prob=0.4), dict(type='Rotate', angle=30., prob=0.6)],
[dict(type='Solarize', thr=256 / 9 * 4, prob=0.6), dict(type='AutoContrast', prob=0.6)],
[dict(type='Equalize', prob=0.8), dict(type='Equalize', prob=0.6)],
[dict(type='Posterize', bits=5, prob=0.6), dict(type='Posterize', bits=5, prob=0.6)],
[dict(type='Equalize', prob=0.4), dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)],
[dict(type='Equalize', prob=0.4), dict(type='Rotate', angle=30 / 9 * 8, prob=0.8)],
[dict(type='Solarize', thr=256 / 9 * 6, prob=0.6), dict(type='Equalize', prob=0.6)],
[dict(type='Posterize', bits=6, prob=0.8), dict(type='Equalize', prob=1.)],
[dict(type='Rotate', angle=10., prob=0.2), dict(type='Solarize', thr=256 / 9, prob=0.6)],
[dict(type='Equalize', prob=0.6), dict(type='Posterize', bits=5, prob=0.4)],
[dict(type='Rotate', angle=30 / 9 * 8, prob=0.8), dict(type='ColorTransform', magnitude=0., prob=0.4)],
[dict(type='Rotate', angle=30., prob=0.4), dict(type='Equalize', prob=0.6)],
[dict(type='Equalize', prob=0.0), dict(type='Equalize', prob=0.8)],
[dict(type='Invert', prob=0.6), dict(type='Equalize', prob=1.)],
[dict(type='ColorTransform', magnitude=0.4, prob=0.6), dict(type='Contrast', magnitude=0.8, prob=1.)],
[dict(type='Rotate', angle=30 / 9 * 8, prob=0.8), dict(type='ColorTransform', magnitude=0.2, prob=1.)],
[dict(type='ColorTransform', magnitude=0.8, prob=0.8), dict(type='Solarize', thr=256 / 9 * 2, prob=0.8)],
[dict(type='Sharpness', magnitude=0.7, prob=0.4), dict(type='Invert', prob=0.6)],
[dict(type='Shear', magnitude=0.3 / 9 * 5, prob=0.6, direction='horizontal'), dict(type='Equalize', prob=1.)],
[dict(type='ColorTransform', magnitude=0., prob=0.4), dict(type='Equalize', prob=0.6)],
[dict(type='Equalize', prob=0.4), dict(type='Solarize', thr=256 / 9 * 5, prob=0.2)],
[dict(type='Solarize', thr=256 / 9 * 4, prob=0.6), dict(type='AutoContrast', prob=0.6)],
[dict(type='Invert', prob=0.6), dict(type='Equalize', prob=1.)],
[dict(type='ColorTransform', magnitude=0.4, prob=0.6), dict(type='Contrast', magnitude=0.8, prob=1.)],
[dict(type='Equalize', prob=0.8), dict(type='Equalize', prob=0.6)],
],
}
RANDAUG_POLICIES = {
# Refers to `_RAND_INCREASING_TRANSFORMS` in pytorch-image-models
'timm_increasing': [
dict(type='AutoContrast'),
dict(type='Equalize'),
dict(type='Invert'),
dict(type='Rotate', magnitude_range=(0, 30)),
dict(type='Posterize', magnitude_range=(4, 0)),
dict(type='Solarize', magnitude_range=(256, 0)),
dict(type='SolarizeAdd', magnitude_range=(0, 110)),
dict(type='ColorTransform', magnitude_range=(0, 0.9)),
dict(type='Contrast', magnitude_range=(0, 0.9)),
dict(type='Brightness', magnitude_range=(0, 0.9)),
dict(type='Sharpness', magnitude_range=(0, 0.9)),
dict(type='Shear', magnitude_range=(0, 0.3), direction='horizontal'),
dict(type='Shear', magnitude_range=(0, 0.3), direction='vertical'),
dict(type='Translate', magnitude_range=(0, 0.45), direction='horizontal'),
dict(type='Translate', magnitude_range=(0, 0.45), direction='vertical'),
],
'simple_increasing': [
dict(type='AutoContrast'),
dict(type='Equalize'),
dict(type='Rotate', magnitude_range=(0, 30)),
dict(type='Shear', magnitude_range=(0, 0.3), direction='horizontal'),
dict(type='Shear', magnitude_range=(0, 0.3), direction='vertical'),
],
}