Yixiao Fang 08dc8c75d3
[Refactor] Add selfsup algorithms. (#1389)
* remove basehead

* add moco series

* add byol simclr simsiam

* add ut

* update configs

* add simsiam hook

* add and refactor beit

* update ut

* add cae

* update extract_feat

* refactor cae

* add mae

* refactor data preprocessor

* update heads

* add maskfeat

* add milan

* add simmim

* add mixmim

* fix lint

* fix ut

* fix lint

* add eva

* add densecl

* add barlowtwins

* add swav

* fix lint

* update readtherdocs rst

* update docs

* update

* Decrease UT memory usage

* Fix docstring

* update DALLEEncoder

* Update model docs

* refactor dalle encoder

* update docstring

* fix ut

* fix config error

* add val_cfg and test_cfg

* refactor clip generator

* fix lint

* pass check

* fix ut

* add lars

* update type of BEiT in configs

* Use MMEngine style momentum in EMA.

* apply mmpretrain solarize

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-03-06 16:53:15 +08:00

49 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence
from mmengine.hooks import Hook
from mmpretrain.registry import HOOKS
@HOOKS.register_module()
class SimSiamHook(Hook):
"""Hook for SimSiam.
This hook is for SimSiam to fix learning rate of predictor.
Args:
fix_pred_lr (bool): whether to fix the lr of predictor or not.
lr (float): the value of fixed lr.
adjust_by_epoch (bool, optional): whether to set lr by epoch or iter.
Defaults to True.
"""
def __init__(self,
fix_pred_lr: bool,
lr: float,
adjust_by_epoch: Optional[bool] = True) -> None:
self.fix_pred_lr = fix_pred_lr
self.lr = lr
self.adjust_by_epoch = adjust_by_epoch
def before_train_iter(self,
runner,
batch_idx: int,
data_batch: Optional[Sequence[dict]] = None) -> None:
"""fix lr of predictor by iter."""
if self.adjust_by_epoch:
return
else:
if self.fix_pred_lr:
for param_group in runner.optim_wrapper.optimizer.param_groups:
if 'fix_lr' in param_group and param_group['fix_lr']:
param_group['lr'] = self.lr
def before_train_epoch(self, runner) -> None:
"""fix lr of predictor by epoch."""
if self.fix_pred_lr:
for param_group in runner.optim_wrapper.optimizer.param_groups:
if 'fix_lr' in param_group and param_group['fix_lr']:
param_group['lr'] = self.lr