mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com>
131 lines
4.6 KiB
Python
131 lines
4.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import Iterable
|
|
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer
|
|
|
|
from mmpretrain.registry import OPTIMIZERS
|
|
|
|
|
|
@OPTIMIZERS.register_module()
|
|
class LARS(Optimizer):
|
|
"""Implements layer-wise adaptive rate scaling for SGD.
|
|
|
|
Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg.
|
|
`Large Batch Training of Convolutional Networks:
|
|
<https://arxiv.org/abs/1708.03888>`_.
|
|
|
|
Args:
|
|
params (Iterable): Iterable of parameters to optimize or dicts defining
|
|
parameter groups.
|
|
lr (float): Base learning rate.
|
|
momentum (float): Momentum factor. Defaults to 0.
|
|
weight_decay (float): Weight decay (L2 penalty). Defaults to 0.
|
|
dampening (float): Dampening for momentum. Defaults to 0.
|
|
eta (float): LARS coefficient. Defaults to 0.001.
|
|
nesterov (bool): Enables Nesterov momentum. Defaults to False.
|
|
eps (float): A small number to avoid dviding zero. Defaults to 1e-8.
|
|
|
|
Example:
|
|
>>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9,
|
|
>>> weight_decay=1e-4, eta=1e-3)
|
|
>>> optimizer.zero_grad()
|
|
>>> loss_fn(model(input), target).backward()
|
|
>>> optimizer.step()
|
|
"""
|
|
|
|
def __init__(self,
|
|
params: Iterable,
|
|
lr: float,
|
|
momentum: float = 0,
|
|
weight_decay: float = 0,
|
|
dampening: float = 0,
|
|
eta: float = 0.001,
|
|
nesterov: bool = False,
|
|
eps: float = 1e-8) -> None:
|
|
if not isinstance(lr, float) and lr < 0.0:
|
|
raise ValueError(f'Invalid learning rate: {lr}')
|
|
if momentum < 0.0:
|
|
raise ValueError(f'Invalid momentum value: {momentum}')
|
|
if weight_decay < 0.0:
|
|
raise ValueError(f'Invalid weight_decay value: {weight_decay}')
|
|
if eta < 0.0:
|
|
raise ValueError(f'Invalid LARS coefficient value: {eta}')
|
|
|
|
defaults = dict(
|
|
lr=lr,
|
|
momentum=momentum,
|
|
dampening=dampening,
|
|
weight_decay=weight_decay,
|
|
nesterov=nesterov,
|
|
eta=eta)
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
raise ValueError(
|
|
'Nesterov momentum requires a momentum and zero dampening')
|
|
|
|
self.eps = eps
|
|
super().__init__(params, defaults)
|
|
|
|
def __setstate__(self, state) -> None:
|
|
super().__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('nesterov', False)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None) -> torch.Tensor:
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
weight_decay = group['weight_decay']
|
|
momentum = group['momentum']
|
|
dampening = group['dampening']
|
|
eta = group['eta']
|
|
nesterov = group['nesterov']
|
|
lr = group['lr']
|
|
lars_exclude = group.get('lars_exclude', False)
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
|
|
d_p = p.grad
|
|
|
|
if lars_exclude:
|
|
local_lr = 1.
|
|
else:
|
|
weight_norm = torch.norm(p).item()
|
|
grad_norm = torch.norm(d_p).item()
|
|
if weight_norm != 0 and grad_norm != 0:
|
|
# Compute local learning rate for this layer
|
|
local_lr = eta * weight_norm / \
|
|
(grad_norm + weight_decay * weight_norm + self.eps)
|
|
else:
|
|
local_lr = 1.
|
|
|
|
actual_lr = local_lr * lr
|
|
d_p = d_p.add(p, alpha=weight_decay).mul(actual_lr)
|
|
if momentum != 0:
|
|
param_state = self.state[p]
|
|
if 'momentum_buffer' not in param_state:
|
|
buf = param_state['momentum_buffer'] = \
|
|
torch.clone(d_p).detach()
|
|
else:
|
|
buf = param_state['momentum_buffer']
|
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
|
if nesterov:
|
|
d_p = d_p.add(buf, alpha=momentum)
|
|
else:
|
|
d_p = buf
|
|
p.add_(-d_p)
|
|
|
|
return loss
|