mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com>
50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
|
|
from mmpretrain.registry import MODELS
|
|
from mmpretrain.structures import DataSample
|
|
from .base import BaseSelfSupervisor
|
|
|
|
|
|
@MODELS.register_module()
|
|
class SwAV(BaseSelfSupervisor):
|
|
"""SwAV.
|
|
|
|
Implementation of `Unsupervised Learning of Visual Features by Contrasting
|
|
Cluster Assignments <https://arxiv.org/abs/2006.09882>`_.
|
|
|
|
The queue is built in ``mmpretrain/engine/hooks/swav_hook.py``.
|
|
"""
|
|
|
|
def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
|
|
**kwargs) -> Dict[str, torch.Tensor]:
|
|
"""Forward computation during training.
|
|
|
|
Args:
|
|
inputs (List[torch.Tensor]): The input images.
|
|
data_samples (List[DataSample]): All elements required
|
|
during the forward function.
|
|
|
|
Returns:
|
|
Dict[str, torch.Tensor]: A dictionary of loss components.
|
|
"""
|
|
assert isinstance(inputs, list)
|
|
# multi-res forward passes
|
|
idx_crops = torch.cumsum(
|
|
torch.unique_consecutive(
|
|
torch.tensor([input.shape[-1] for input in inputs]),
|
|
return_counts=True)[1], 0)
|
|
start_idx = 0
|
|
output = []
|
|
for end_idx in idx_crops:
|
|
_out = self.backbone(torch.cat(inputs[start_idx:end_idx]))
|
|
output.append(_out)
|
|
start_idx = end_idx
|
|
output = self.neck(output)
|
|
|
|
loss = self.head.loss(output)
|
|
losses = dict(loss=loss)
|
|
return losses
|