mmclassification/mmpretrain/models/utils/clip_generator_helper.py
Ma Zerun 6847d20d57
[Feature] Support multiple multi-modal algorithms and inferencers. (#1561)
* [Feat] Migrate blip caption to mmpretrain. (#50)

* Migrate blip caption to mmpretrain

* minor fix

* support train

* [Feature] Support OFA caption task. (#51)

* [Feature] Support OFA caption task.

* Remove duplicated files.

* [Feature] Support OFA vqa task. (#58)

* [Feature] Support OFA vqa task.

* Fix lint.

* [Feat] Add BLIP retrieval to mmpretrain. (#55)

* init

* minor fix for train

* fix according to comments

* refactor

* Update Blip retrieval. (#62)

* [Feature] Support OFA visual grounding task. (#59)

* [Feature] Support OFA visual grounding task.

* minor add TODO

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Add flamingos coco caption and vqa. (#60)

* first init

* init flamingo coco

* add vqa

* minor fix

* remove unnecessary modules

* Update config

* Use `ApplyToList`.

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 coco retrieval  (#53)

* [Feature]: Add blip2 retriever

* [Feature]: Add blip2 all modules

* [Feature]: Refine model

* [Feature]: x1

* [Feature]: Runnable coco ret

* [Feature]: Runnable version

* [Feature]: Fix lint

* [Fix]: Fix lint

* [Feature]: Use 364 img size

* [Feature]: Refactor blip2

* [Fix]: Fix lint

* refactor files

* minor fix

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Remove

* fix blip caption inputs (#68)

* [Feat] Add BLIP NLVR support. (#67)

* first init

* init flamingo coco

* add vqa

* add nlvr

* refactor nlvr

* minor fix

* minor fix

* Update dataset

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 Caption (#70)

* [Feature]: Add language model

* [Feature]: blip2 caption forward

* [Feature]: Reproduce the results

* [Feature]: Refactor caption

* refine config

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Migrate BLIP VQA to mmpretrain (#69)

* reformat

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* refactor code

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Update RefCOCO dataset

* [Fix] fix lint

* [Feature] Implement inference APIs for multi-modal tasks. (#65)

* [Feature] Implement inference APIs for multi-modal tasks.

* [Project] Add gradio demo.

* [Improve] Update requirements

* Update flamingo

* Update blip

* Add NLVR inferencer

* Update flamingo

* Update hugging face model register

* Update ofa vqa

* Update BLIP-vqa (#71)

* Update blip-vqa docstring (#72)

* Refine flamingo docstring (#73)

* [Feature]: BLIP2 VQA (#61)

* [Feature]: VQA forward

* [Feature]: Reproduce accuracy

* [Fix]: Fix lint

* [Fix]: Add blank line

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feature]: BLIP2 docstring (#74)

* [Feature]: Add caption docstring

* [Feature]: Add docstring to blip2 vqa

* [Feature]: Add docstring to retrieval

* Update BLIP-2 metafile and README (#75)

* [Feature]: Add readme and docstring

* Update blip2 results

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature] BLIP Visual Grounding on MMPretrain Branch (#66)

* blip grounding merge with mmpretrain

* remove commit

* blip grounding test and inference api

* refcoco dataset

* refcoco dataset refine config

* rebasing

* gitignore

* rebasing

* minor edit

* minor edit

* Update blip-vqa docstring (#72)

* rebasing

* Revert "minor edit"

This reverts commit 639cec757c215e654625ed0979319e60f0be9044.

* blip grounding final

* precommit

* refine config

* refine config

* Update blip visual grounding

---------

Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: mzr1996 <mzr1996@163.com>

* Update visual grounding metric

* Update OFA docstring, README and metafiles. (#76)

* [Docs] Update installation docs and gradio demo docs. (#77)

* Update OFA name

* Update Visual Grounding Visualizer

* Integrate accelerate support

* Fix imports.

* Fix timm backbone

* Update imports

* Update README

* Update circle ci

* Update flamingo config

* Add gradio demo README

* [Feature]: Add scienceqa (#1571)

* [Feature]: Add scienceqa

* [Feature]: Change param name

* Update docs

* Update video

---------

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
Co-authored-by: yingfhu <yingfhu@gmail.com>
Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00

395 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/zejiangh/MILAN
from collections import OrderedDict
from typing import Optional, Tuple, Union
import numpy as np
import torch
from mmengine.logging import MMLogger
from torch import nn
from mmpretrain.registry import MODELS
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
@MODELS.register_module()
class QuickGELU(nn.Module):
"""A faster version of GELU."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
"""Residual Attention Block (RAB).
This module implements the same function as the MultiheadAttention,
but with a different interface, which is mainly used
in CLIP.
Args:
d_model (int): The feature dimension.
n_head (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
Defaults to None.
"""
def __init__(self,
d_model: int,
n_head: int,
attn_mask: Optional[torch.Tensor] = None,
return_attention: bool = False) -> None:
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
('gelu', QuickGELU()),
('c_proj', nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.return_attention = return_attention
def attention(self, x: torch.Tensor) -> torch.Tensor:
"""Attention function."""
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
if self.return_attention:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)
else:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)[0]
def forward(
self, x: torch.Tensor
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward function."""
if self.return_attention:
x_, attention = self.attention(self.ln_1(x))
x = x + x_
x = x + self.mlp(self.ln_2(x))
return x, attention
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
"""Transformer.
Both visual and text branches use this transformer.
Args:
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
"""
def __init__(self,
width: int,
layers: int,
heads: int,
attn_mask: Optional[torch.Tensor] = None) -> None:
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList()
for _ in range(layers - 1):
self.resblocks.append(
ResidualAttentionBlock(width, heads, attn_mask))
self.resblocks.append(
ResidualAttentionBlock(
width, heads, attn_mask, return_attention=True))
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward function."""
z = []
for idx, blk in enumerate(self.resblocks):
if idx < self.layers - 1:
x = blk(x)
z.append(x.permute(1, 0, 2))
else:
x, attention = blk(x)
z.append(x.permute(1, 0, 2))
return x, attention, z
class VisionTransformer(nn.Module):
"""Vision Transformer for CLIP.
Args:
input_resolution (int): The image size.
patch_size (int): The patch size.
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
out_dim (int): The output dimension.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
finetune=False,
average_targets: int = 1) -> None:
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size)**2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.finetune = finetune
if finetune is False:
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.average_targets = average_targets
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function."""
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([
self.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x, attention, z = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x, attention
class CLIP(nn.Module):
"""CLIP.
Args:
embed_dim (int): The embedding dimension.
image_resolution (int): The image size.
vision_layers (int): The number of layers in the vision transformer.
vision_width (int): The feature dimension in the vision transformer.
vision_patch_size (int): The patch size in the vision transformer.
context_length (int): The context length.
vocab_size (int): The vocabulary size.
transformer_width (int): The feature dimension in the text transformer.
transformer_heads (int): The number of attention heads in the
text transformer.
transformer_layers (int): The number of layers in the text transformer.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(
self,
embed_dim: int,
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
finetune: bool = False,
average_targets: int = 1,
) -> None:
super().__init__()
self.context_length = context_length
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
finetune=finetune,
average_targets=average_targets,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self) -> None:
"""Initialize the parameters.
The pretrained weight will override the initialized parameters by this
function.
"""
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(
self.text_projection, std=self.transformer.width**-0.5)
def build_attention_mask(self) -> torch.Tensor:
"""Build the attention mask."""
# lazily create causal attention mask, with full attention between the
# vision tokens pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self) -> torch.dtype:
"""Get the dtype."""
return self.visual.conv1.weight.dtype
def encode_image(self,
image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode the image.
Get the feature and attention mask from the last layer of the visual
branch of CLIP.
Args:
image (torch.Tensor): The image tensor with shape NCHW.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask.
"""
return self.visual(image.type(self.dtype))
def build_clip_model(state_dict: dict,
finetune: bool = False,
average_targets: int = 1) -> nn.Module:
"""Build the CLIP model.
Args:
state_dict (dict): The pretrained state dict.
finetune (bool): Whether to fineturn the model.
average_targets (bool): Whether to average the target.
Returns:
nn.Module: The CLIP model.
"""
vit = 'visual.proj' in state_dict
if vit:
vision_width = state_dict['visual.conv1.weight'].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith('visual.') and k.endswith('.attn.in_proj_weight')
])
vision_patch_size = state_dict['visual.conv1.weight'].shape[-1]
grid_size = round(
(state_dict['visual.positional_embedding'].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
embed_dim = state_dict['text_projection'].shape[1]
context_length = state_dict['positional_embedding'].shape[0]
vocab_size = state_dict['token_embedding.weight'].shape[0]
transformer_width = state_dict['ln_final.weight'].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split('.')[2] for k in state_dict
if k.startswith('transformer.resblocks')))
model = CLIP(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
finetune,
average_targets,
)
for key in ['input_resolution', 'context_length', 'vocab_size']:
if key in state_dict:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
MMLogger.get_current_instance().info(f'Load CLIP model: {msg}')
return model.eval()