mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
99 lines
3.2 KiB
Python
99 lines
3.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import contextlib
|
|
from typing import Optional
|
|
|
|
import transformers
|
|
from mmengine.registry import Registry
|
|
from transformers import AutoConfig, PreTrainedModel
|
|
from transformers.models.auto.auto_factory import _BaseAutoModelClass
|
|
|
|
from mmpretrain.registry import MODELS, TOKENIZER
|
|
|
|
|
|
def register_hf_tokenizer(
|
|
cls: Optional[type] = None,
|
|
registry: Registry = TOKENIZER,
|
|
):
|
|
"""Register HuggingFace-style PreTrainedTokenizerBase class."""
|
|
if cls is None:
|
|
|
|
# use it as a decorator: @register_hf_tokenizer()
|
|
def _register(cls):
|
|
register_hf_tokenizer(cls=cls)
|
|
return cls
|
|
|
|
return _register
|
|
|
|
def from_pretrained(**kwargs):
|
|
if ('pretrained_model_name_or_path' not in kwargs
|
|
and 'name_or_path' not in kwargs):
|
|
raise TypeError(
|
|
f'{cls.__name__}.from_pretrained() missing required '
|
|
"argument 'pretrained_model_name_or_path' or 'name_or_path'.")
|
|
# `pretrained_model_name_or_path` is too long for config,
|
|
# add an alias name `name_or_path` here.
|
|
name_or_path = kwargs.pop('pretrained_model_name_or_path',
|
|
kwargs.pop('name_or_path'))
|
|
return cls.from_pretrained(name_or_path, **kwargs)
|
|
|
|
registry._register_module(module=from_pretrained, module_name=cls.__name__)
|
|
return cls
|
|
|
|
|
|
_load_hf_pretrained_model = True
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def no_load_hf_pretrained_model():
|
|
global _load_hf_pretrained_model
|
|
_load_hf_pretrained_model = False
|
|
yield
|
|
_load_hf_pretrained_model = True
|
|
|
|
|
|
def register_hf_model(
|
|
cls: Optional[type] = None,
|
|
registry: Registry = MODELS,
|
|
):
|
|
"""Register HuggingFace-style PreTrainedModel class."""
|
|
if cls is None:
|
|
|
|
# use it as a decorator: @register_hf_tokenizer()
|
|
def _register(cls):
|
|
register_hf_model(cls=cls)
|
|
return cls
|
|
|
|
return _register
|
|
|
|
if issubclass(cls, _BaseAutoModelClass):
|
|
get_config = AutoConfig.from_pretrained
|
|
from_config = cls.from_config
|
|
elif issubclass(cls, PreTrainedModel):
|
|
get_config = cls.config_class.from_pretrained
|
|
from_config = cls
|
|
else:
|
|
raise TypeError('Not auto model nor pretrained model of huggingface.')
|
|
|
|
def build(**kwargs):
|
|
if ('pretrained_model_name_or_path' not in kwargs
|
|
and 'name_or_path' not in kwargs):
|
|
raise TypeError(
|
|
f'{cls.__name__} missing required argument '
|
|
'`pretrained_model_name_or_path` or `name_or_path`.')
|
|
# `pretrained_model_name_or_path` is too long for config,
|
|
# add an alias name `name_or_path` here.
|
|
name_or_path = kwargs.pop('pretrained_model_name_or_path',
|
|
kwargs.pop('name_or_path'))
|
|
|
|
if kwargs.pop('load_pretrained', True) and _load_hf_pretrained_model:
|
|
return cls.from_pretrained(name_or_path, **kwargs)
|
|
else:
|
|
cfg = get_config(name_or_path, **kwargs)
|
|
return from_config(cfg)
|
|
|
|
registry._register_module(module=build, module_name=cls.__name__)
|
|
return cls
|
|
|
|
|
|
register_hf_model(transformers.AutoModelForCausalLM)
|