Ma Zerun 6847d20d57
[Feature] Support multiple multi-modal algorithms and inferencers. (#1561)
* [Feat] Migrate blip caption to mmpretrain. (#50)

* Migrate blip caption to mmpretrain

* minor fix

* support train

* [Feature] Support OFA caption task. (#51)

* [Feature] Support OFA caption task.

* Remove duplicated files.

* [Feature] Support OFA vqa task. (#58)

* [Feature] Support OFA vqa task.

* Fix lint.

* [Feat] Add BLIP retrieval to mmpretrain. (#55)

* init

* minor fix for train

* fix according to comments

* refactor

* Update Blip retrieval. (#62)

* [Feature] Support OFA visual grounding task. (#59)

* [Feature] Support OFA visual grounding task.

* minor add TODO

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Add flamingos coco caption and vqa. (#60)

* first init

* init flamingo coco

* add vqa

* minor fix

* remove unnecessary modules

* Update config

* Use `ApplyToList`.

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 coco retrieval  (#53)

* [Feature]: Add blip2 retriever

* [Feature]: Add blip2 all modules

* [Feature]: Refine model

* [Feature]: x1

* [Feature]: Runnable coco ret

* [Feature]: Runnable version

* [Feature]: Fix lint

* [Fix]: Fix lint

* [Feature]: Use 364 img size

* [Feature]: Refactor blip2

* [Fix]: Fix lint

* refactor files

* minor fix

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Remove

* fix blip caption inputs (#68)

* [Feat] Add BLIP NLVR support. (#67)

* first init

* init flamingo coco

* add vqa

* add nlvr

* refactor nlvr

* minor fix

* minor fix

* Update dataset

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature]: BLIP2 Caption (#70)

* [Feature]: Add language model

* [Feature]: blip2 caption forward

* [Feature]: Reproduce the results

* [Feature]: Refactor caption

* refine config

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feat] Migrate BLIP VQA to mmpretrain (#69)

* reformat

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* change

* refactor code

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* Update RefCOCO dataset

* [Fix] fix lint

* [Feature] Implement inference APIs for multi-modal tasks. (#65)

* [Feature] Implement inference APIs for multi-modal tasks.

* [Project] Add gradio demo.

* [Improve] Update requirements

* Update flamingo

* Update blip

* Add NLVR inferencer

* Update flamingo

* Update hugging face model register

* Update ofa vqa

* Update BLIP-vqa (#71)

* Update blip-vqa docstring (#72)

* Refine flamingo docstring (#73)

* [Feature]: BLIP2 VQA (#61)

* [Feature]: VQA forward

* [Feature]: Reproduce accuracy

* [Fix]: Fix lint

* [Fix]: Add blank line

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>

* [Feature]: BLIP2 docstring (#74)

* [Feature]: Add caption docstring

* [Feature]: Add docstring to blip2 vqa

* [Feature]: Add docstring to retrieval

* Update BLIP-2 metafile and README (#75)

* [Feature]: Add readme and docstring

* Update blip2 results

---------

Co-authored-by: mzr1996 <mzr1996@163.com>

* [Feature] BLIP Visual Grounding on MMPretrain Branch (#66)

* blip grounding merge with mmpretrain

* remove commit

* blip grounding test and inference api

* refcoco dataset

* refcoco dataset refine config

* rebasing

* gitignore

* rebasing

* minor edit

* minor edit

* Update blip-vqa docstring (#72)

* rebasing

* Revert "minor edit"

This reverts commit 639cec757c215e654625ed0979319e60f0be9044.

* blip grounding final

* precommit

* refine config

* refine config

* Update blip visual grounding

---------

Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: mzr1996 <mzr1996@163.com>

* Update visual grounding metric

* Update OFA docstring, README and metafiles. (#76)

* [Docs] Update installation docs and gradio demo docs. (#77)

* Update OFA name

* Update Visual Grounding Visualizer

* Integrate accelerate support

* Fix imports.

* Fix timm backbone

* Update imports

* Update README

* Update circle ci

* Update flamingo config

* Add gradio demo README

* [Feature]: Add scienceqa (#1571)

* [Feature]: Add scienceqa

* [Feature]: Change param name

* Update docs

* Update video

---------

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
Co-authored-by: yingfhu <yingfhu@gmail.com>
Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com>
Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00

99 lines
3.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import contextlib
from typing import Optional
import transformers
from mmengine.registry import Registry
from transformers import AutoConfig, PreTrainedModel
from transformers.models.auto.auto_factory import _BaseAutoModelClass
from mmpretrain.registry import MODELS, TOKENIZER
def register_hf_tokenizer(
cls: Optional[type] = None,
registry: Registry = TOKENIZER,
):
"""Register HuggingFace-style PreTrainedTokenizerBase class."""
if cls is None:
# use it as a decorator: @register_hf_tokenizer()
def _register(cls):
register_hf_tokenizer(cls=cls)
return cls
return _register
def from_pretrained(**kwargs):
if ('pretrained_model_name_or_path' not in kwargs
and 'name_or_path' not in kwargs):
raise TypeError(
f'{cls.__name__}.from_pretrained() missing required '
"argument 'pretrained_model_name_or_path' or 'name_or_path'.")
# `pretrained_model_name_or_path` is too long for config,
# add an alias name `name_or_path` here.
name_or_path = kwargs.pop('pretrained_model_name_or_path',
kwargs.pop('name_or_path'))
return cls.from_pretrained(name_or_path, **kwargs)
registry._register_module(module=from_pretrained, module_name=cls.__name__)
return cls
_load_hf_pretrained_model = True
@contextlib.contextmanager
def no_load_hf_pretrained_model():
global _load_hf_pretrained_model
_load_hf_pretrained_model = False
yield
_load_hf_pretrained_model = True
def register_hf_model(
cls: Optional[type] = None,
registry: Registry = MODELS,
):
"""Register HuggingFace-style PreTrainedModel class."""
if cls is None:
# use it as a decorator: @register_hf_tokenizer()
def _register(cls):
register_hf_model(cls=cls)
return cls
return _register
if issubclass(cls, _BaseAutoModelClass):
get_config = AutoConfig.from_pretrained
from_config = cls.from_config
elif issubclass(cls, PreTrainedModel):
get_config = cls.config_class.from_pretrained
from_config = cls
else:
raise TypeError('Not auto model nor pretrained model of huggingface.')
def build(**kwargs):
if ('pretrained_model_name_or_path' not in kwargs
and 'name_or_path' not in kwargs):
raise TypeError(
f'{cls.__name__} missing required argument '
'`pretrained_model_name_or_path` or `name_or_path`.')
# `pretrained_model_name_or_path` is too long for config,
# add an alias name `name_or_path` here.
name_or_path = kwargs.pop('pretrained_model_name_or_path',
kwargs.pop('name_or_path'))
if kwargs.pop('load_pretrained', True) and _load_hf_pretrained_model:
return cls.from_pretrained(name_or_path, **kwargs)
else:
cfg = get_config(name_or_path, **kwargs)
return from_config(cfg)
registry._register_module(module=build, module_name=cls.__name__)
return cls
register_hf_model(transformers.AutoModelForCausalLM)