mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
from typing import List
|
|
|
|
import mmengine
|
|
import numpy as np
|
|
from mmengine.dataset import BaseDataset
|
|
from pycocotools.coco import COCO
|
|
|
|
from mmpretrain.registry import DATASETS
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class RefCOCO(BaseDataset):
|
|
"""RefCOCO dataset.
|
|
|
|
Args:
|
|
ann_file (str): Annotation file path.
|
|
data_root (str): The root directory for ``data_prefix`` and
|
|
``ann_file``. Defaults to ''.
|
|
data_prefix (str): Prefix for training data.
|
|
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple.
|
|
**kwargs: Other keyword arguments in :class:`BaseDataset`.
|
|
"""
|
|
|
|
def __init__(self,
|
|
data_root,
|
|
ann_file,
|
|
data_prefix,
|
|
split_file,
|
|
split='train',
|
|
**kwargs):
|
|
self.split_file = split_file
|
|
self.split = split
|
|
|
|
super().__init__(
|
|
data_root=data_root,
|
|
data_prefix=dict(img_path=data_prefix),
|
|
ann_file=ann_file,
|
|
**kwargs,
|
|
)
|
|
|
|
def _join_prefix(self):
|
|
if not mmengine.is_abs(self.split_file) and self.split_file:
|
|
self.split_file = osp.join(self.data_root, self.split_file)
|
|
|
|
return super()._join_prefix()
|
|
|
|
def load_data_list(self) -> List[dict]:
|
|
"""Load data list."""
|
|
with mmengine.get_local_path(self.ann_file) as ann_file:
|
|
coco = COCO(ann_file)
|
|
splits = mmengine.load(self.split_file, file_format='pkl')
|
|
img_prefix = self.data_prefix['img_path']
|
|
|
|
data_list = []
|
|
join_path = mmengine.fileio.get_file_backend(img_prefix).join_path
|
|
for refer in splits:
|
|
if refer['split'] != self.split:
|
|
continue
|
|
|
|
ann = coco.anns[refer['ann_id']]
|
|
img = coco.imgs[ann['image_id']]
|
|
sentences = refer['sentences']
|
|
bbox = np.array(ann['bbox'], dtype=np.float32)
|
|
bbox[2:4] = bbox[0:2] + bbox[2:4] # XYWH -> XYXY
|
|
|
|
for sent in sentences:
|
|
data_info = {
|
|
'img_path': join_path(img_prefix, img['file_name']),
|
|
'image_id': ann['image_id'],
|
|
'ann_id': ann['id'],
|
|
'text': sent['sent'],
|
|
'gt_bboxes': bbox[None, :],
|
|
}
|
|
data_list.append(data_info)
|
|
|
|
if len(data_list) == 0:
|
|
raise ValueError(f'No sample in split "{self.split}".')
|
|
|
|
return data_list
|