mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [CI] Add test mim CI. (#879) * [CI] Add test mim CI. (#879) * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * update * update ci * rebase * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * update * update readme and configs * update readme and configs * refactore eva02 * [CI] Add test mim CI. (#879) * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * update * update ci * rebase * feat: add eva02 backbone * feat: add eva02 backbone * feat: add eva02 backbone * update * update readme and configs * refactore eva02 * update readme and metafile * update readme and metafile * update readme and metafile * update * rename eva02 * rename eva02 * fix uts * rename configs --------- Co-authored-by: Ma Zerun <mzr1996@163.com> Co-authored-by: Ezra-Yu <18586273+Ezra-Yu@users.noreply.github.com>
33 lines
859 B
Python
33 lines
859 B
Python
_base_ = [
|
|
'../_base_/datasets/imagenet_bs16_eva_448.py',
|
|
'../_base_/schedules/imagenet_bs2048_AdamW.py',
|
|
'../_base_/default_runtime.py'
|
|
]
|
|
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='ViTEVA02',
|
|
arch='l',
|
|
img_size=448,
|
|
patch_size=14,
|
|
sub_ln=True,
|
|
final_norm=False,
|
|
out_type='avg_featmap'),
|
|
neck=None,
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1000,
|
|
in_channels=1024,
|
|
loss=dict(
|
|
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
|
|
),
|
|
init_cfg=[
|
|
dict(type='TruncNormal', layer='Linear', std=.02),
|
|
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
|
|
],
|
|
train_cfg=dict(augments=[
|
|
dict(type='Mixup', alpha=0.8),
|
|
dict(type='CutMix', alpha=1.0)
|
|
]))
|