mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* hivit added * Update hivit.py * Update hivit.py * Add files via upload * Update __init__.py * Add files via upload * Update __init__.py * Add files via upload * Update hivit.py * Add files via upload * Add files via upload * Add files via upload * Add files via upload * Update itpn.py * Add files via upload * Update __init__.py * Update mae_hivit-base-p16.py * Delete mim_itpn-base-p16.py * Add files via upload * Update itpn_hivit-base-p16.py * Update itpn.py * Update hivit.py * Update __init__.py * Update mae.py * Delete hivit.py * Update __init__.py * Delete configs/itpn directory * Add files via upload * Add files via upload * Delete configs/hivit directory * Add files via upload * refactor and add metafile and readme * update clip * add ut * update ut * update * update docstring * update model.rst --------- Co-authored-by: 田运杰 <48153283+sunsmarterjie@users.noreply.github.com>
50 lines
1.4 KiB
Python
50 lines
1.4 KiB
Python
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
data_root = 'data/imagenet/'
|
|
data_preprocessor = dict(
|
|
type='TwoNormDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
# clip mean & std
|
|
second_mean=[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255],
|
|
second_std=[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255],
|
|
to_rgb=True)
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='ColorJitter',
|
|
brightness=0.4,
|
|
contrast=0.4,
|
|
saturation=0.4,
|
|
hue=0.),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(
|
|
type='RandomResizedCropAndInterpolationWithTwoPic',
|
|
size=224,
|
|
second_size=224,
|
|
interpolation='bicubic',
|
|
second_interpolation='bicubic',
|
|
scale=(0.2, 1.0)),
|
|
dict(
|
|
type='BEiTMaskGenerator',
|
|
input_size=(14, 14),
|
|
num_masking_patches=75,
|
|
max_num_patches=75,
|
|
min_num_patches=16),
|
|
dict(type='PackInputs')
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=256,
|
|
num_workers=8,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
collate_fn=dict(type='default_collate'),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file='meta/train.txt',
|
|
data_prefix=dict(img_path='train/'),
|
|
pipeline=train_pipeline))
|