mmclassification/configs/mocov3/benchmarks/vit-base-p16_8xb128-linear-coslr-90e_in1k.py
Yixiao Fang 08dc8c75d3
[Refactor] Add selfsup algorithms. (#1389)
* remove basehead

* add moco series

* add byol simclr simsiam

* add ut

* update configs

* add simsiam hook

* add and refactor beit

* update ut

* add cae

* update extract_feat

* refactor cae

* add mae

* refactor data preprocessor

* update heads

* add maskfeat

* add milan

* add simmim

* add mixmim

* fix lint

* fix ut

* fix lint

* add eva

* add densecl

* add barlowtwins

* add swav

* fix lint

* update readtherdocs rst

* update docs

* update

* Decrease UT memory usage

* Fix docstring

* update DALLEEncoder

* Update model docs

* refactor dalle encoder

* update docstring

* fix ut

* fix config error

* add val_cfg and test_cfg

* refactor clip generator

* fix lint

* pass check

* fix ut

* add lars

* update type of BEiT in configs

* Use MMEngine style momentum in EMA.

* apply mmpretrain solarize

---------

Co-authored-by: mzr1996 <mzr1996@163.com>
2023-03-06 16:53:15 +08:00

45 lines
1.1 KiB
Python

_base_ = [
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/default_runtime.py',
]
# dataset settings
train_dataloader = dict(batch_size=128)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='MoCoV3ViT',
arch='base', # embed_dim = 768
img_size=224,
patch_size=16,
stop_grad_conv1=True,
frozen_stages=12,
norm_eval=True),
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=dict(type='Normal', std=0.01, layer='Linear'),
))
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=12, momentum=0.9, weight_decay=0.))
# learning rate scheduler
param_scheduler = [
dict(type='CosineAnnealingLR', T_max=90, by_epoch=True, begin=0, end=90)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=90)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))