1066 lines
41 KiB
Python
1066 lines
41 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import inspect
|
|
import math
|
|
import random
|
|
from numbers import Number
|
|
from typing import Sequence
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
|
|
from ..builder import PIPELINES
|
|
from .compose import Compose
|
|
|
|
try:
|
|
import albumentations
|
|
except ImportError:
|
|
albumentations = None
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class RandomCrop(object):
|
|
"""Crop the given Image at a random location.
|
|
|
|
Args:
|
|
size (sequence or int): Desired output size of the crop. If size is an
|
|
int instead of sequence like (h, w), a square crop (size, size) is
|
|
made.
|
|
padding (int or sequence, optional): Optional padding on each border
|
|
of the image. If a sequence of length 4 is provided, it is used to
|
|
pad left, top, right, bottom borders respectively. If a sequence
|
|
of length 2 is provided, it is used to pad left/right, top/bottom
|
|
borders, respectively. Default: None, which means no padding.
|
|
pad_if_needed (boolean): It will pad the image if smaller than the
|
|
desired size to avoid raising an exception. Since cropping is done
|
|
after padding, the padding seems to be done at a random offset.
|
|
Default: False.
|
|
pad_val (Number | Sequence[Number]): Pixel pad_val value for constant
|
|
fill. If a tuple of length 3, it is used to pad_val R, G, B
|
|
channels respectively. Default: 0.
|
|
padding_mode (str): Type of padding. Defaults to "constant". Should
|
|
be one of the following:
|
|
|
|
- constant: Pads with a constant value, this value is specified \
|
|
with pad_val.
|
|
- edge: pads with the last value at the edge of the image.
|
|
- reflect: Pads with reflection of image without repeating the \
|
|
last value on the edge. For example, padding [1, 2, 3, 4] \
|
|
with 2 elements on both sides in reflect mode will result \
|
|
in [3, 2, 1, 2, 3, 4, 3, 2].
|
|
- symmetric: Pads with reflection of image repeating the last \
|
|
value on the edge. For example, padding [1, 2, 3, 4] with \
|
|
2 elements on both sides in symmetric mode will result in \
|
|
[2, 1, 1, 2, 3, 4, 4, 3].
|
|
"""
|
|
|
|
def __init__(self,
|
|
size,
|
|
padding=None,
|
|
pad_if_needed=False,
|
|
pad_val=0,
|
|
padding_mode='constant'):
|
|
if isinstance(size, (tuple, list)):
|
|
self.size = size
|
|
else:
|
|
self.size = (size, size)
|
|
# check padding mode
|
|
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
|
|
self.padding = padding
|
|
self.pad_if_needed = pad_if_needed
|
|
self.pad_val = pad_val
|
|
self.padding_mode = padding_mode
|
|
|
|
@staticmethod
|
|
def get_params(img, output_size):
|
|
"""Get parameters for ``crop`` for a random crop.
|
|
|
|
Args:
|
|
img (ndarray): Image to be cropped.
|
|
output_size (tuple): Expected output size of the crop.
|
|
|
|
Returns:
|
|
tuple: Params (xmin, ymin, target_height, target_width) to be
|
|
passed to ``crop`` for random crop.
|
|
"""
|
|
height = img.shape[0]
|
|
width = img.shape[1]
|
|
target_height, target_width = output_size
|
|
if width == target_width and height == target_height:
|
|
return 0, 0, height, width
|
|
|
|
ymin = random.randint(0, height - target_height)
|
|
xmin = random.randint(0, width - target_width)
|
|
return ymin, xmin, target_height, target_width
|
|
|
|
def __call__(self, results):
|
|
"""
|
|
Args:
|
|
img (ndarray): Image to be cropped.
|
|
"""
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
if self.padding is not None:
|
|
img = mmcv.impad(
|
|
img, padding=self.padding, pad_val=self.pad_val)
|
|
|
|
# pad the height if needed
|
|
if self.pad_if_needed and img.shape[0] < self.size[0]:
|
|
img = mmcv.impad(
|
|
img,
|
|
padding=(0, self.size[0] - img.shape[0], 0,
|
|
self.size[0] - img.shape[0]),
|
|
pad_val=self.pad_val,
|
|
padding_mode=self.padding_mode)
|
|
|
|
# pad the width if needed
|
|
if self.pad_if_needed and img.shape[1] < self.size[1]:
|
|
img = mmcv.impad(
|
|
img,
|
|
padding=(self.size[1] - img.shape[1], 0,
|
|
self.size[1] - img.shape[1], 0),
|
|
pad_val=self.pad_val,
|
|
padding_mode=self.padding_mode)
|
|
|
|
ymin, xmin, height, width = self.get_params(img, self.size)
|
|
results[key] = mmcv.imcrop(
|
|
img,
|
|
np.array([
|
|
xmin,
|
|
ymin,
|
|
xmin + width - 1,
|
|
ymin + height - 1,
|
|
]))
|
|
return results
|
|
|
|
def __repr__(self):
|
|
return (self.__class__.__name__ +
|
|
f'(size={self.size}, padding={self.padding})')
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class RandomResizedCrop(object):
|
|
"""Crop the given image to random size and aspect ratio.
|
|
|
|
A crop of random size (default: of 0.08 to 1.0) of the original size and a
|
|
random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio
|
|
is made. This crop is finally resized to given size.
|
|
|
|
Args:
|
|
size (sequence | int): Desired output size of the crop. If size is an
|
|
int instead of sequence like (h, w), a square crop (size, size) is
|
|
made.
|
|
scale (tuple): Range of the random size of the cropped image compared
|
|
to the original image. Defaults to (0.08, 1.0).
|
|
ratio (tuple): Range of the random aspect ratio of the cropped image
|
|
compared to the original image. Defaults to (3. / 4., 4. / 3.).
|
|
max_attempts (int): Maxinum number of attempts before falling back to
|
|
Central Crop. Defaults to 10.
|
|
efficientnet_style (bool): Whether to use efficientnet style Random
|
|
ResizedCrop. Defaults to False.
|
|
min_covered (Number): Minimum ratio of the cropped area to the original
|
|
area. Only valid if efficientnet_style is true. Defaults to 0.1.
|
|
crop_padding (int): The crop padding parameter in efficientnet style
|
|
center crop. Only valid if efficientnet_style is true.
|
|
Defaults to 32.
|
|
interpolation (str): Interpolation method, accepted values are
|
|
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to
|
|
'bilinear'.
|
|
backend (str): The image resize backend type, accepted values are
|
|
`cv2` and `pillow`. Defaults to `cv2`.
|
|
"""
|
|
|
|
def __init__(self,
|
|
size,
|
|
scale=(0.08, 1.0),
|
|
ratio=(3. / 4., 4. / 3.),
|
|
max_attempts=10,
|
|
efficientnet_style=False,
|
|
min_covered=0.1,
|
|
crop_padding=32,
|
|
interpolation='bilinear',
|
|
backend='cv2'):
|
|
if efficientnet_style:
|
|
assert isinstance(size, int)
|
|
self.size = (size, size)
|
|
assert crop_padding >= 0
|
|
else:
|
|
if isinstance(size, (tuple, list)):
|
|
self.size = size
|
|
else:
|
|
self.size = (size, size)
|
|
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
|
|
raise ValueError('range should be of kind (min, max). '
|
|
f'But received scale {scale} and rato {ratio}.')
|
|
assert min_covered >= 0, 'min_covered should be no less than 0.'
|
|
assert isinstance(max_attempts, int) and max_attempts >= 0, \
|
|
'max_attempts mush be of typle int and no less than 0.'
|
|
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
|
|
'lanczos')
|
|
if backend not in ['cv2', 'pillow']:
|
|
raise ValueError(f'backend: {backend} is not supported for resize.'
|
|
'Supported backends are "cv2", "pillow"')
|
|
|
|
self.scale = scale
|
|
self.ratio = ratio
|
|
self.max_attempts = max_attempts
|
|
self.efficientnet_style = efficientnet_style
|
|
self.min_covered = min_covered
|
|
self.crop_padding = crop_padding
|
|
self.interpolation = interpolation
|
|
self.backend = backend
|
|
|
|
@staticmethod
|
|
def get_params(img, scale, ratio, max_attempts=10):
|
|
"""Get parameters for ``crop`` for a random sized crop.
|
|
|
|
Args:
|
|
img (ndarray): Image to be cropped.
|
|
scale (tuple): Range of the random size of the cropped image
|
|
compared to the original image size.
|
|
ratio (tuple): Range of the random aspect ratio of the cropped
|
|
image compared to the original image area.
|
|
max_attempts (int): Maxinum number of attempts before falling back
|
|
to central crop. Defaults to 10.
|
|
|
|
Returns:
|
|
tuple: Params (ymin, xmin, ymax, xmax) to be passed to `crop` for
|
|
a random sized crop.
|
|
"""
|
|
height = img.shape[0]
|
|
width = img.shape[1]
|
|
area = height * width
|
|
|
|
for _ in range(max_attempts):
|
|
target_area = random.uniform(*scale) * area
|
|
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
|
|
aspect_ratio = math.exp(random.uniform(*log_ratio))
|
|
|
|
target_width = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
target_height = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
if 0 < target_width <= width and 0 < target_height <= height:
|
|
ymin = random.randint(0, height - target_height)
|
|
xmin = random.randint(0, width - target_width)
|
|
ymax = ymin + target_height - 1
|
|
xmax = xmin + target_width - 1
|
|
return ymin, xmin, ymax, xmax
|
|
|
|
# Fallback to central crop
|
|
in_ratio = float(width) / float(height)
|
|
if in_ratio < min(ratio):
|
|
target_width = width
|
|
target_height = int(round(target_width / min(ratio)))
|
|
elif in_ratio > max(ratio):
|
|
target_height = height
|
|
target_width = int(round(target_height * max(ratio)))
|
|
else: # whole image
|
|
target_width = width
|
|
target_height = height
|
|
ymin = (height - target_height) // 2
|
|
xmin = (width - target_width) // 2
|
|
ymax = ymin + target_height - 1
|
|
xmax = xmin + target_width - 1
|
|
return ymin, xmin, ymax, xmax
|
|
|
|
# https://github.com/kakaobrain/fast-autoaugment/blob/master/FastAutoAugment/data.py # noqa
|
|
@staticmethod
|
|
def get_params_efficientnet_style(img,
|
|
size,
|
|
scale,
|
|
ratio,
|
|
max_attempts=10,
|
|
min_covered=0.1,
|
|
crop_padding=32):
|
|
"""Get parameters for ``crop`` for a random sized crop in efficientnet
|
|
style.
|
|
|
|
Args:
|
|
img (ndarray): Image to be cropped.
|
|
size (sequence): Desired output size of the crop.
|
|
scale (tuple): Range of the random size of the cropped image
|
|
compared to the original image size.
|
|
ratio (tuple): Range of the random aspect ratio of the cropped
|
|
image compared to the original image area.
|
|
max_attempts (int): Maxinum number of attempts before falling back
|
|
to central crop. Defaults to 10.
|
|
min_covered (Number): Minimum ratio of the cropped area to the
|
|
original area. Only valid if efficientnet_style is true.
|
|
Defaults to 0.1.
|
|
crop_padding (int): The crop padding parameter in efficientnet
|
|
style center crop. Defaults to 32.
|
|
|
|
Returns:
|
|
tuple: Params (ymin, xmin, ymax, xmax) to be passed to `crop` for
|
|
a random sized crop.
|
|
"""
|
|
height, width = img.shape[:2]
|
|
area = height * width
|
|
min_target_area = scale[0] * area
|
|
max_target_area = scale[1] * area
|
|
|
|
for _ in range(max_attempts):
|
|
aspect_ratio = random.uniform(*ratio)
|
|
min_target_height = int(
|
|
round(math.sqrt(min_target_area / aspect_ratio)))
|
|
max_target_height = int(
|
|
round(math.sqrt(max_target_area / aspect_ratio)))
|
|
|
|
if max_target_height * aspect_ratio > width:
|
|
max_target_height = int((width + 0.5 - 1e-7) / aspect_ratio)
|
|
if max_target_height * aspect_ratio > width:
|
|
max_target_height -= 1
|
|
|
|
max_target_height = min(max_target_height, height)
|
|
min_target_height = min(max_target_height, min_target_height)
|
|
|
|
# slightly differs from tf inplementation
|
|
target_height = int(
|
|
round(random.uniform(min_target_height, max_target_height)))
|
|
target_width = int(round(target_height * aspect_ratio))
|
|
target_area = target_height * target_width
|
|
|
|
# slight differs from tf. In tf, if target_area > max_target_area,
|
|
# area will be recalculated
|
|
if (target_area < min_target_area or target_area > max_target_area
|
|
or target_width > width or target_height > height
|
|
or target_area < min_covered * area):
|
|
continue
|
|
|
|
ymin = random.randint(0, height - target_height)
|
|
xmin = random.randint(0, width - target_width)
|
|
ymax = ymin + target_height - 1
|
|
xmax = xmin + target_width - 1
|
|
|
|
return ymin, xmin, ymax, xmax
|
|
|
|
# Fallback to central crop
|
|
img_short = min(height, width)
|
|
crop_size = size[0] / (size[0] + crop_padding) * img_short
|
|
|
|
ymin = max(0, int(round((height - crop_size) / 2.)))
|
|
xmin = max(0, int(round((width - crop_size) / 2.)))
|
|
ymax = min(height, ymin + crop_size) - 1
|
|
xmax = min(width, xmin + crop_size) - 1
|
|
|
|
return ymin, xmin, ymax, xmax
|
|
|
|
def __call__(self, results):
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
if self.efficientnet_style:
|
|
get_params_func = self.get_params_efficientnet_style
|
|
get_params_args = dict(
|
|
img=img,
|
|
size=self.size,
|
|
scale=self.scale,
|
|
ratio=self.ratio,
|
|
max_attempts=self.max_attempts,
|
|
min_covered=self.min_covered,
|
|
crop_padding=self.crop_padding)
|
|
else:
|
|
get_params_func = self.get_params
|
|
get_params_args = dict(
|
|
img=img,
|
|
scale=self.scale,
|
|
ratio=self.ratio,
|
|
max_attempts=self.max_attempts)
|
|
ymin, xmin, ymax, xmax = get_params_func(**get_params_args)
|
|
img = mmcv.imcrop(img, bboxes=np.array([xmin, ymin, xmax, ymax]))
|
|
results[key] = mmcv.imresize(
|
|
img,
|
|
tuple(self.size[::-1]),
|
|
interpolation=self.interpolation,
|
|
backend=self.backend)
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__ + f'(size={self.size}'
|
|
repr_str += f', scale={tuple(round(s, 4) for s in self.scale)}'
|
|
repr_str += f', ratio={tuple(round(r, 4) for r in self.ratio)}'
|
|
repr_str += f', max_attempts={self.max_attempts}'
|
|
repr_str += f', efficientnet_style={self.efficientnet_style}'
|
|
repr_str += f', min_covered={self.min_covered}'
|
|
repr_str += f', crop_padding={self.crop_padding}'
|
|
repr_str += f', interpolation={self.interpolation}'
|
|
repr_str += f', backend={self.backend})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class RandomGrayscale(object):
|
|
"""Randomly convert image to grayscale with a probability of gray_prob.
|
|
|
|
Args:
|
|
gray_prob (float): Probability that image should be converted to
|
|
grayscale. Default: 0.1.
|
|
|
|
Returns:
|
|
ndarray: Image after randomly grayscale transform.
|
|
|
|
Notes:
|
|
- If input image is 1 channel: grayscale version is 1 channel.
|
|
- If input image is 3 channel: grayscale version is 3 channel
|
|
with r == g == b.
|
|
"""
|
|
|
|
def __init__(self, gray_prob=0.1):
|
|
self.gray_prob = gray_prob
|
|
|
|
def __call__(self, results):
|
|
"""
|
|
Args:
|
|
img (ndarray): Image to be converted to grayscale.
|
|
|
|
Returns:
|
|
ndarray: Randomly grayscaled image.
|
|
"""
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
num_output_channels = img.shape[2]
|
|
if random.random() < self.gray_prob:
|
|
if num_output_channels > 1:
|
|
img = mmcv.rgb2gray(img)[:, :, None]
|
|
results[key] = np.dstack(
|
|
[img for _ in range(num_output_channels)])
|
|
return results
|
|
results[key] = img
|
|
return results
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + f'(gray_prob={self.gray_prob})'
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class RandomFlip(object):
|
|
"""Flip the image randomly.
|
|
|
|
Flip the image randomly based on flip probaility and flip direction.
|
|
|
|
Args:
|
|
flip_prob (float): probability of the image being flipped. Default: 0.5
|
|
direction (str): The flipping direction. Options are
|
|
'horizontal' and 'vertical'. Default: 'horizontal'.
|
|
"""
|
|
|
|
def __init__(self, flip_prob=0.5, direction='horizontal'):
|
|
assert 0 <= flip_prob <= 1
|
|
assert direction in ['horizontal', 'vertical']
|
|
self.flip_prob = flip_prob
|
|
self.direction = direction
|
|
|
|
def __call__(self, results):
|
|
"""Call function to flip image.
|
|
|
|
Args:
|
|
results (dict): Result dict from loading pipeline.
|
|
|
|
Returns:
|
|
dict: Flipped results, 'flip', 'flip_direction' keys are added into
|
|
result dict.
|
|
"""
|
|
flip = True if np.random.rand() < self.flip_prob else False
|
|
results['flip'] = flip
|
|
results['flip_direction'] = self.direction
|
|
if results['flip']:
|
|
# flip image
|
|
for key in results.get('img_fields', ['img']):
|
|
results[key] = mmcv.imflip(
|
|
results[key], direction=results['flip_direction'])
|
|
return results
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + f'(flip_prob={self.flip_prob})'
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class RandomErasing(object):
|
|
"""Randomly selects a rectangle region in an image and erase pixels.
|
|
|
|
Args:
|
|
erase_prob (float): Probability that image will be randomly erased.
|
|
Default: 0.5
|
|
min_area_ratio (float): Minimum erased area / input image area
|
|
Default: 0.02
|
|
max_area_ratio (float): Maximum erased area / input image area
|
|
Default: 0.4
|
|
aspect_range (sequence | float): Aspect ratio range of erased area.
|
|
if float, it will be converted to (aspect_ratio, 1/aspect_ratio)
|
|
Default: (3/10, 10/3)
|
|
mode (str): Fill method in erased area, can be:
|
|
|
|
- const (default): All pixels are assign with the same value.
|
|
- rand: each pixel is assigned with a random value in [0, 255]
|
|
|
|
fill_color (sequence | Number): Base color filled in erased area.
|
|
Defaults to (128, 128, 128).
|
|
fill_std (sequence | Number, optional): If set and ``mode`` is 'rand',
|
|
fill erased area with random color from normal distribution
|
|
(mean=fill_color, std=fill_std); If not set, fill erased area with
|
|
random color from uniform distribution (0~255). Defaults to None.
|
|
|
|
Note:
|
|
See `Random Erasing Data Augmentation
|
|
<https://arxiv.org/pdf/1708.04896.pdf>`_
|
|
|
|
This paper provided 4 modes: RE-R, RE-M, RE-0, RE-255, and use RE-M as
|
|
default. The config of these 4 modes are:
|
|
|
|
- RE-R: RandomErasing(mode='rand')
|
|
- RE-M: RandomErasing(mode='const', fill_color=(123.67, 116.3, 103.5))
|
|
- RE-0: RandomErasing(mode='const', fill_color=0)
|
|
- RE-255: RandomErasing(mode='const', fill_color=255)
|
|
"""
|
|
|
|
def __init__(self,
|
|
erase_prob=0.5,
|
|
min_area_ratio=0.02,
|
|
max_area_ratio=0.4,
|
|
aspect_range=(3 / 10, 10 / 3),
|
|
mode='const',
|
|
fill_color=(128, 128, 128),
|
|
fill_std=None):
|
|
assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1.
|
|
assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1.
|
|
assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1.
|
|
assert min_area_ratio <= max_area_ratio, \
|
|
'min_area_ratio should be smaller than max_area_ratio'
|
|
if isinstance(aspect_range, float):
|
|
aspect_range = min(aspect_range, 1 / aspect_range)
|
|
aspect_range = (aspect_range, 1 / aspect_range)
|
|
assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \
|
|
and all(isinstance(x, float) for x in aspect_range), \
|
|
'aspect_range should be a float or Sequence with two float.'
|
|
assert all(x > 0 for x in aspect_range), \
|
|
'aspect_range should be positive.'
|
|
assert aspect_range[0] <= aspect_range[1], \
|
|
'In aspect_range (min, max), min should be smaller than max.'
|
|
assert mode in ['const', 'rand']
|
|
if isinstance(fill_color, Number):
|
|
fill_color = [fill_color] * 3
|
|
assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \
|
|
and all(isinstance(x, Number) for x in fill_color), \
|
|
'fill_color should be a float or Sequence with three int.'
|
|
if fill_std is not None:
|
|
if isinstance(fill_std, Number):
|
|
fill_std = [fill_std] * 3
|
|
assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \
|
|
and all(isinstance(x, Number) for x in fill_std), \
|
|
'fill_std should be a float or Sequence with three int.'
|
|
|
|
self.erase_prob = erase_prob
|
|
self.min_area_ratio = min_area_ratio
|
|
self.max_area_ratio = max_area_ratio
|
|
self.aspect_range = aspect_range
|
|
self.mode = mode
|
|
self.fill_color = fill_color
|
|
self.fill_std = fill_std
|
|
|
|
def _fill_pixels(self, img, top, left, h, w):
|
|
if self.mode == 'const':
|
|
patch = np.empty((h, w, 3), dtype=np.uint8)
|
|
patch[:, :] = np.array(self.fill_color, dtype=np.uint8)
|
|
elif self.fill_std is None:
|
|
# Uniform distribution
|
|
patch = np.random.uniform(0, 256, (h, w, 3)).astype(np.uint8)
|
|
else:
|
|
# Normal distribution
|
|
patch = np.random.normal(self.fill_color, self.fill_std, (h, w, 3))
|
|
patch = np.clip(patch.astype(np.int32), 0, 255).astype(np.uint8)
|
|
|
|
img[top:top + h, left:left + w] = patch
|
|
return img
|
|
|
|
def __call__(self, results):
|
|
"""
|
|
Args:
|
|
results (dict): Results dict from pipeline
|
|
|
|
Returns:
|
|
dict: Results after the transformation.
|
|
"""
|
|
for key in results.get('img_fields', ['img']):
|
|
if np.random.rand() > self.erase_prob:
|
|
continue
|
|
img = results[key]
|
|
img_h, img_w = img.shape[:2]
|
|
|
|
# convert to log aspect to ensure equal probability of aspect ratio
|
|
log_aspect_range = np.log(
|
|
np.array(self.aspect_range, dtype=np.float32))
|
|
aspect_ratio = np.exp(np.random.uniform(*log_aspect_range))
|
|
area = img_h * img_w
|
|
area *= np.random.uniform(self.min_area_ratio, self.max_area_ratio)
|
|
|
|
h = min(int(round(np.sqrt(area * aspect_ratio))), img_h)
|
|
w = min(int(round(np.sqrt(area / aspect_ratio))), img_w)
|
|
top = np.random.randint(0, img_h - h) if img_h > h else 0
|
|
left = np.random.randint(0, img_w - w) if img_w > w else 0
|
|
img = self._fill_pixels(img, top, left, h, w)
|
|
|
|
results[key] = img
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(erase_prob={self.erase_prob}, '
|
|
repr_str += f'min_area_ratio={self.min_area_ratio}, '
|
|
repr_str += f'max_area_ratio={self.max_area_ratio}, '
|
|
repr_str += f'aspect_range={self.aspect_range}, '
|
|
repr_str += f'mode={self.mode}, '
|
|
repr_str += f'fill_color={self.fill_color}, '
|
|
repr_str += f'fill_std={self.fill_std})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class Resize(object):
|
|
"""Resize images.
|
|
|
|
Args:
|
|
size (int | tuple): Images scales for resizing (h, w).
|
|
When size is int, the default behavior is to resize an image
|
|
to (size, size). When size is tuple and the second value is -1,
|
|
the short edge of an image is resized to its first value.
|
|
For example, when size is 224, the image is resized to 224x224.
|
|
When size is (224, -1), the short side is resized to 224 and the
|
|
other side is computed based on the short side, maintaining the
|
|
aspect ratio.
|
|
interpolation (str): Interpolation method, accepted values are
|
|
"nearest", "bilinear", "bicubic", "area", "lanczos".
|
|
More details can be found in `mmcv.image.geometric`.
|
|
backend (str): The image resize backend type, accepted values are
|
|
`cv2` and `pillow`. Default: `cv2`.
|
|
"""
|
|
|
|
def __init__(self, size, interpolation='bilinear', backend='cv2'):
|
|
assert isinstance(size, int) or (isinstance(size, tuple)
|
|
and len(size) == 2)
|
|
self.resize_w_short_side = False
|
|
if isinstance(size, int):
|
|
assert size > 0
|
|
size = (size, size)
|
|
else:
|
|
assert size[0] > 0 and (size[1] > 0 or size[1] == -1)
|
|
if size[1] == -1:
|
|
self.resize_w_short_side = True
|
|
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
|
|
'lanczos')
|
|
if backend not in ['cv2', 'pillow']:
|
|
raise ValueError(f'backend: {backend} is not supported for resize.'
|
|
'Supported backends are "cv2", "pillow"')
|
|
|
|
self.size = size
|
|
self.interpolation = interpolation
|
|
self.backend = backend
|
|
|
|
def _resize_img(self, results):
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
ignore_resize = False
|
|
if self.resize_w_short_side:
|
|
h, w = img.shape[:2]
|
|
short_side = self.size[0]
|
|
if (w <= h and w == short_side) or (h <= w
|
|
and h == short_side):
|
|
ignore_resize = True
|
|
else:
|
|
if w < h:
|
|
width = short_side
|
|
height = int(short_side * h / w)
|
|
else:
|
|
height = short_side
|
|
width = int(short_side * w / h)
|
|
else:
|
|
height, width = self.size
|
|
if not ignore_resize:
|
|
img = mmcv.imresize(
|
|
img,
|
|
size=(width, height),
|
|
interpolation=self.interpolation,
|
|
return_scale=False,
|
|
backend=self.backend)
|
|
results[key] = img
|
|
results['img_shape'] = img.shape
|
|
|
|
def __call__(self, results):
|
|
self._resize_img(results)
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(size={self.size}, '
|
|
repr_str += f'interpolation={self.interpolation})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class CenterCrop(object):
|
|
r"""Center crop the image.
|
|
|
|
Args:
|
|
crop_size (int | tuple): Expected size after cropping with the format
|
|
of (h, w).
|
|
efficientnet_style (bool): Whether to use efficientnet style center
|
|
crop. Defaults to False.
|
|
crop_padding (int): The crop padding parameter in efficientnet style
|
|
center crop. Only valid if efficientnet style is True. Defaults to
|
|
32.
|
|
interpolation (str): Interpolation method, accepted values are
|
|
'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Only valid if
|
|
``efficientnet_style`` is True. Defaults to 'bilinear'.
|
|
backend (str): The image resize backend type, accepted values are
|
|
`cv2` and `pillow`. Only valid if efficientnet style is True.
|
|
Defaults to `cv2`.
|
|
|
|
|
|
Notes:
|
|
- If the image is smaller than the crop size, return the original
|
|
image.
|
|
- If efficientnet_style is set to False, the pipeline would be a simple
|
|
center crop using the crop_size.
|
|
- If efficientnet_style is set to True, the pipeline will be to first
|
|
to perform the center crop with the ``crop_size_`` as:
|
|
|
|
.. math::
|
|
\text{crop\_size\_} = \frac{\text{crop\_size}}{\text{crop\_size} +
|
|
\text{crop\_padding}} \times \text{short\_edge}
|
|
|
|
And then the pipeline resizes the img to the input crop size.
|
|
"""
|
|
|
|
def __init__(self,
|
|
crop_size,
|
|
efficientnet_style=False,
|
|
crop_padding=32,
|
|
interpolation='bilinear',
|
|
backend='cv2'):
|
|
if efficientnet_style:
|
|
assert isinstance(crop_size, int)
|
|
assert crop_padding >= 0
|
|
assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
|
|
'lanczos')
|
|
if backend not in ['cv2', 'pillow']:
|
|
raise ValueError(
|
|
f'backend: {backend} is not supported for '
|
|
'resize. Supported backends are "cv2", "pillow"')
|
|
else:
|
|
assert isinstance(crop_size, int) or (isinstance(crop_size, tuple)
|
|
and len(crop_size) == 2)
|
|
if isinstance(crop_size, int):
|
|
crop_size = (crop_size, crop_size)
|
|
assert crop_size[0] > 0 and crop_size[1] > 0
|
|
self.crop_size = crop_size
|
|
self.efficientnet_style = efficientnet_style
|
|
self.crop_padding = crop_padding
|
|
self.interpolation = interpolation
|
|
self.backend = backend
|
|
|
|
def __call__(self, results):
|
|
crop_height, crop_width = self.crop_size[0], self.crop_size[1]
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
# img.shape has length 2 for grayscale, length 3 for color
|
|
img_height, img_width = img.shape[:2]
|
|
|
|
# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L118 # noqa
|
|
if self.efficientnet_style:
|
|
img_short = min(img_height, img_width)
|
|
crop_height = crop_height / (crop_height +
|
|
self.crop_padding) * img_short
|
|
crop_width = crop_width / (crop_width +
|
|
self.crop_padding) * img_short
|
|
|
|
y1 = max(0, int(round((img_height - crop_height) / 2.)))
|
|
x1 = max(0, int(round((img_width - crop_width) / 2.)))
|
|
y2 = min(img_height, y1 + crop_height) - 1
|
|
x2 = min(img_width, x1 + crop_width) - 1
|
|
|
|
# crop the image
|
|
img = mmcv.imcrop(img, bboxes=np.array([x1, y1, x2, y2]))
|
|
|
|
if self.efficientnet_style:
|
|
img = mmcv.imresize(
|
|
img,
|
|
tuple(self.crop_size[::-1]),
|
|
interpolation=self.interpolation,
|
|
backend=self.backend)
|
|
img_shape = img.shape
|
|
results[key] = img
|
|
results['img_shape'] = img_shape
|
|
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
|
|
repr_str += f', efficientnet_style={self.efficientnet_style}'
|
|
repr_str += f', crop_padding={self.crop_padding}'
|
|
repr_str += f', interpolation={self.interpolation}'
|
|
repr_str += f', backend={self.backend})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class Normalize(object):
|
|
"""Normalize the image.
|
|
|
|
Args:
|
|
mean (sequence): Mean values of 3 channels.
|
|
std (sequence): Std values of 3 channels.
|
|
to_rgb (bool): Whether to convert the image from BGR to RGB,
|
|
default is true.
|
|
"""
|
|
|
|
def __init__(self, mean, std, to_rgb=True):
|
|
self.mean = np.array(mean, dtype=np.float32)
|
|
self.std = np.array(std, dtype=np.float32)
|
|
self.to_rgb = to_rgb
|
|
|
|
def __call__(self, results):
|
|
for key in results.get('img_fields', ['img']):
|
|
results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
|
|
self.to_rgb)
|
|
results['img_norm_cfg'] = dict(
|
|
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(mean={list(self.mean)}, '
|
|
repr_str += f'std={list(self.std)}, '
|
|
repr_str += f'to_rgb={self.to_rgb})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class ColorJitter(object):
|
|
"""Randomly change the brightness, contrast and saturation of an image.
|
|
|
|
Args:
|
|
brightness (float): How much to jitter brightness.
|
|
brightness_factor is chosen uniformly from
|
|
[max(0, 1 - brightness), 1 + brightness].
|
|
contrast (float): How much to jitter contrast.
|
|
contrast_factor is chosen uniformly from
|
|
[max(0, 1 - contrast), 1 + contrast].
|
|
saturation (float): How much to jitter saturation.
|
|
saturation_factor is chosen uniformly from
|
|
[max(0, 1 - saturation), 1 + saturation].
|
|
"""
|
|
|
|
def __init__(self, brightness, contrast, saturation):
|
|
self.brightness = brightness
|
|
self.contrast = contrast
|
|
self.saturation = saturation
|
|
|
|
def __call__(self, results):
|
|
brightness_factor = random.uniform(0, self.brightness)
|
|
contrast_factor = random.uniform(0, self.contrast)
|
|
saturation_factor = random.uniform(0, self.saturation)
|
|
color_jitter_transforms = [
|
|
dict(
|
|
type='Brightness',
|
|
magnitude=brightness_factor,
|
|
prob=1.,
|
|
random_negative_prob=0.5),
|
|
dict(
|
|
type='Contrast',
|
|
magnitude=contrast_factor,
|
|
prob=1.,
|
|
random_negative_prob=0.5),
|
|
dict(
|
|
type='ColorTransform',
|
|
magnitude=saturation_factor,
|
|
prob=1.,
|
|
random_negative_prob=0.5)
|
|
]
|
|
random.shuffle(color_jitter_transforms)
|
|
transform = Compose(color_jitter_transforms)
|
|
return transform(results)
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(brightness={self.brightness}, '
|
|
repr_str += f'contrast={self.contrast}, '
|
|
repr_str += f'saturation={self.saturation})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class Lighting(object):
|
|
"""Adjust images lighting using AlexNet-style PCA jitter.
|
|
|
|
Args:
|
|
eigval (list): the eigenvalue of the convariance matrix of pixel
|
|
values, respectively.
|
|
eigvec (list[list]): the eigenvector of the convariance matrix of pixel
|
|
values, respectively.
|
|
alphastd (float): The standard deviation for distribution of alpha.
|
|
Dafaults to 0.1
|
|
to_rgb (bool): Whether to convert img to rgb.
|
|
"""
|
|
|
|
def __init__(self, eigval, eigvec, alphastd=0.1, to_rgb=True):
|
|
assert isinstance(eigval, list), \
|
|
f'eigval must be of type list, got {type(eigval)} instead.'
|
|
assert isinstance(eigvec, list), \
|
|
f'eigvec must be of type list, got {type(eigvec)} instead.'
|
|
for vec in eigvec:
|
|
assert isinstance(vec, list) and len(vec) == len(eigvec[0]), \
|
|
'eigvec must contains lists with equal length.'
|
|
self.eigval = np.array(eigval)
|
|
self.eigvec = np.array(eigvec)
|
|
self.alphastd = alphastd
|
|
self.to_rgb = to_rgb
|
|
|
|
def __call__(self, results):
|
|
for key in results.get('img_fields', ['img']):
|
|
img = results[key]
|
|
results[key] = mmcv.adjust_lighting(
|
|
img,
|
|
self.eigval,
|
|
self.eigvec,
|
|
alphastd=self.alphastd,
|
|
to_rgb=self.to_rgb)
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(eigval={self.eigval.tolist()}, '
|
|
repr_str += f'eigvec={self.eigvec.tolist()}, '
|
|
repr_str += f'alphastd={self.alphastd}, '
|
|
repr_str += f'to_rgb={self.to_rgb})'
|
|
return repr_str
|
|
|
|
|
|
@PIPELINES.register_module()
|
|
class Albu(object):
|
|
"""Albumentation augmentation.
|
|
|
|
Adds custom transformations from Albumentations library.
|
|
Please, visit `https://albumentations.readthedocs.io`
|
|
to get more information.
|
|
An example of ``transforms`` is as followed:
|
|
|
|
.. code-block::
|
|
[
|
|
dict(
|
|
type='ShiftScaleRotate',
|
|
shift_limit=0.0625,
|
|
scale_limit=0.0,
|
|
rotate_limit=0,
|
|
interpolation=1,
|
|
p=0.5),
|
|
dict(
|
|
type='RandomBrightnessContrast',
|
|
brightness_limit=[0.1, 0.3],
|
|
contrast_limit=[0.1, 0.3],
|
|
p=0.2),
|
|
dict(type='ChannelShuffle', p=0.1),
|
|
dict(
|
|
type='OneOf',
|
|
transforms=[
|
|
dict(type='Blur', blur_limit=3, p=1.0),
|
|
dict(type='MedianBlur', blur_limit=3, p=1.0)
|
|
],
|
|
p=0.1),
|
|
]
|
|
|
|
Args:
|
|
transforms (list[dict]): A list of albu transformations
|
|
keymap (dict): Contains {'input key':'albumentation-style key'}
|
|
"""
|
|
|
|
def __init__(self, transforms, keymap=None, update_pad_shape=False):
|
|
if albumentations is None:
|
|
raise RuntimeError('albumentations is not installed')
|
|
else:
|
|
from albumentations import Compose
|
|
|
|
self.transforms = transforms
|
|
self.filter_lost_elements = False
|
|
self.update_pad_shape = update_pad_shape
|
|
|
|
self.aug = Compose([self.albu_builder(t) for t in self.transforms])
|
|
|
|
if not keymap:
|
|
self.keymap_to_albu = {
|
|
'img': 'image',
|
|
}
|
|
else:
|
|
self.keymap_to_albu = keymap
|
|
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
|
|
|
|
def albu_builder(self, cfg):
|
|
"""Import a module from albumentations.
|
|
|
|
It inherits some of :func:`build_from_cfg` logic.
|
|
Args:
|
|
cfg (dict): Config dict. It should at least contain the key "type".
|
|
Returns:
|
|
obj: The constructed object.
|
|
"""
|
|
|
|
assert isinstance(cfg, dict) and 'type' in cfg
|
|
args = cfg.copy()
|
|
|
|
obj_type = args.pop('type')
|
|
if mmcv.is_str(obj_type):
|
|
if albumentations is None:
|
|
raise RuntimeError('albumentations is not installed')
|
|
obj_cls = getattr(albumentations, obj_type)
|
|
elif inspect.isclass(obj_type):
|
|
obj_cls = obj_type
|
|
else:
|
|
raise TypeError(
|
|
f'type must be a str or valid type, but got {type(obj_type)}')
|
|
|
|
if 'transforms' in args:
|
|
args['transforms'] = [
|
|
self.albu_builder(transform)
|
|
for transform in args['transforms']
|
|
]
|
|
|
|
return obj_cls(**args)
|
|
|
|
@staticmethod
|
|
def mapper(d, keymap):
|
|
"""Dictionary mapper.
|
|
|
|
Renames keys according to keymap provided.
|
|
Args:
|
|
d (dict): old dict
|
|
keymap (dict): {'old_key':'new_key'}
|
|
Returns:
|
|
dict: new dict.
|
|
"""
|
|
|
|
updated_dict = {}
|
|
for k, v in zip(d.keys(), d.values()):
|
|
new_k = keymap.get(k, k)
|
|
updated_dict[new_k] = d[k]
|
|
return updated_dict
|
|
|
|
def __call__(self, results):
|
|
# dict to albumentations format
|
|
results = self.mapper(results, self.keymap_to_albu)
|
|
|
|
results = self.aug(**results)
|
|
|
|
if 'gt_labels' in results:
|
|
if isinstance(results['gt_labels'], list):
|
|
results['gt_labels'] = np.array(results['gt_labels'])
|
|
results['gt_labels'] = results['gt_labels'].astype(np.int64)
|
|
|
|
# back to the original format
|
|
results = self.mapper(results, self.keymap_back)
|
|
|
|
# update final shape
|
|
if self.update_pad_shape:
|
|
results['pad_shape'] = results['img'].shape
|
|
|
|
return results
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
|
|
return repr_str
|