mmclassification/mmpretrain/apis/image_retrieval.py

251 lines
9.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import BaseDataset, Compose, default_collate
from mmengine.device import get_device
from mmengine.infer import BaseInferencer
from mmengine.model import BaseModel
from mmengine.runner import load_checkpoint
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .model import get_model, list_models
ModelType = Union[BaseModel, str, Config]
InputType = Union[str, np.ndarray, list]
class ImageRetrievalInferencer(BaseInferencer):
"""The inferencer for image to image retrieval.
Args:
model (BaseModel | str | Config): A model name or a path to the confi
file, or a :obj:`BaseModel` object. The model name can be found
by ``ImageClassificationInferencer.list_models()`` and you can also
query it in :doc:`/modelzoo_statistics`.
weights (str, optional): Path to the checkpoint. If None, it will try
to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, use CPU or
the device of the input model. Defaults to None.
Example:
1. Use a pre-trained model in MMClassification to inference an image.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
>>> inferencer('demo/demo.JPEG')
[{'pred_score': array([...]),
'pred_label': 65,
'pred_score': 0.6649367809295654,
'pred_class': 'sea snake'}]
2. Use a config file and checkpoint to inference multiple images on GPU,
and save the visualization results in a folder.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer(
model='configs/resnet/resnet50_8xb32_in1k.py',
weights='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
device='cuda')
>>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
""" # noqa: E501
postprocess_kwargs: set = {'topk'}
def __init__(
self,
model: ModelType,
prototype,
prototype_vecs=None,
prepare_batch_size=8,
pretrained: Union[bool, str] = True,
device: Union[str, torch.device, None] = None,
) -> None:
device = device or get_device()
if isinstance(model, BaseModel):
if isinstance(pretrained, str):
load_checkpoint(model, pretrained, map_location='cpu')
model = model.to(device)
else:
model = get_model(model, pretrained, device)
model.eval()
self.config = model.config
self.model = model
self.pipeline = self._init_pipeline(self.config)
self.collate_fn = default_collate
self.visualizer = None
self.prototype_dataset = self._prepare_prototype(
prototype, prototype_vecs, prepare_batch_size)
def _prepare_prototype(self, prototype, prototype_vecs=None, batch_size=8):
from mmengine.dataset import DefaultSampler
from torch.utils.data import DataLoader
def build_dataloader(dataset):
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=self.collate_fn,
sampler=DefaultSampler(dataset, shuffle=False),
persistent_workers=False,
)
test_pipeline = self.config.test_dataloader.dataset.pipeline
if isinstance(prototype, str):
# A directory path of images
from mmpretrain.datasets import CustomDataset
dataset = CustomDataset(
data_root=prototype, pipeline=test_pipeline, with_label=False)
dataloader = build_dataloader(dataset)
elif isinstance(prototype, dict):
# A config of dataset
from mmpretrain.registry import DATASETS
prototype.setdefault('pipeline', test_pipeline)
dataset = DATASETS.build(prototype)
dataloader = build_dataloader(dataset)
elif isinstance(prototype, DataLoader):
dataset = prototype.dataset
dataloader = prototype
elif isinstance(prototype, BaseDataset):
dataset = prototype
dataloader = build_dataloader(dataset)
else:
raise TypeError(f'Unsupported prototype type {type(prototype)}.')
if prototype_vecs is not None and Path(prototype_vecs).exists():
self.model.prototype = prototype_vecs
else:
self.model.prototype = dataloader
self.model.prepare_prototype()
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
if prototype_vecs is None:
logger.info('The prototype has been prepared, you can use '
'`save_prototype_vecs` to dump it into a pickle '
'file for the future usage.')
elif not Path(prototype_vecs).exists():
self.save_prototype_vecs(prototype_vecs)
logger.info(f'The prototype has been saved at {prototype_vecs}.')
return dataset
def save_prototype_vecs(self, path):
self.model.dump_prototype(path)
def __call__(self,
inputs: InputType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
return_datasamples (bool): Whether to return results as
:obj:`DataSample`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
rescale_factor (float, optional): Rescale the image by the rescale
factor for visualization. This is helpful when the image is too
large or too small for visualization. Defaults to None.
draw_score (bool): Whether to draw the prediction scores
of prediction categories. Defaults to True.
show (bool): Whether to display the visualization result in a
window. Defaults to False.
show_dir (str, optional): If not None, save the visualization
results in the specified directory. Defaults to None.
Returns:
list: The inference results.
"""
return super().__call__(inputs, return_datasamples, batch_size,
**kwargs)
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile':
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = test_pipeline_cfg[1:]
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(self.collate_fn, chunked_data)
def visualize(self,
ori_inputs: List[InputType],
preds: List[DataSample],
show: bool = False,
draw_score=True,
show_dir=None):
if not show and show_dir is None:
return None
raise NotImplementedError('Not implemented yet.')
def postprocess(
self,
preds: List[DataSample],
visualization: List[np.ndarray],
return_datasamples=False,
topk=1,
) -> dict:
if return_datasamples:
return preds
results = []
for data_sample in preds:
match_scores, indices = torch.topk(data_sample.pred_score, k=topk)
matches = []
for match_score, sample_idx in zip(match_scores, indices):
sample = self.prototype_dataset.get_data_info(
sample_idx.item())
sample_idx = sample.pop('sample_idx')
matches.append({
'match_score': match_score,
'sample_idx': sample_idx,
'sample': sample
})
results.append(matches)
return results
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern, task='Image Retrieval')