mmclassification/tests/test_models/test_selfsup/test_simmim.py

71 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmpretrain.models import SimMIM, SimMIMSwinTransformer
from mmpretrain.structures import DataSample
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simmim_swin():
backbone = dict(
arch='B',
img_size=192,
stage_cfgs=dict(block_cfgs=dict(window_size=6)))
simmim_backbone = SimMIMSwinTransformer(**backbone)
simmim_backbone.init_weights()
fake_inputs = torch.randn((2, 3, 192, 192))
fake_mask = torch.rand((2, 48, 48))
# test with mask
fake_outputs = simmim_backbone(fake_inputs, fake_mask)[0]
assert fake_outputs.shape == torch.Size([2, 1024, 6, 6])
# test without mask
fake_outputs = simmim_backbone(fake_inputs, None)
assert len(fake_outputs) == 1
assert fake_outputs[0].shape == torch.Size([2, 1024, 6, 6])
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simmim():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
# model config
backbone = dict(
type='SimMIMSwinTransformer',
arch='B',
img_size=192,
stage_cfgs=dict(block_cfgs=dict(window_size=6)))
neck = dict(
type='SimMIMLinearDecoder', in_channels=128 * 2**3, encoder_stride=32)
head = dict(
type='SimMIMHead',
patch_size=4,
loss=dict(type='PixelReconstructionLoss', criterion='L1', channel=3))
model = SimMIM(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor)
# test forward_train
fake_data_sample = DataSample()
fake_mask = torch.rand((48, 48))
fake_data_sample.set_mask(fake_mask)
fake_data = {
'inputs': torch.randn((2, 3, 192, 192)),
'data_samples': [fake_data_sample for _ in range(2)]
}
fake_inputs = model.data_preprocessor(fake_data)
fake_outputs = model(**fake_inputs, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)