322 lines
11 KiB
Python
322 lines
11 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as cp
|
|
from mmcv.cnn import ConvModule, build_activation_layer
|
|
from mmengine.model import BaseModule
|
|
from mmengine.model.weight_init import constant_init, normal_init
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from mmcls.models.utils import channel_shuffle, make_divisible
|
|
from mmcls.registry import MODELS
|
|
from .base_backbone import BaseBackbone
|
|
|
|
|
|
class ShuffleUnit(BaseModule):
|
|
"""ShuffleUnit block.
|
|
|
|
ShuffleNet unit with pointwise group convolution (GConv) and channel
|
|
shuffle.
|
|
|
|
Args:
|
|
in_channels (int): The input channels of the ShuffleUnit.
|
|
out_channels (int): The output channels of the ShuffleUnit.
|
|
groups (int): The number of groups to be used in grouped 1x1
|
|
convolutions in each ShuffleUnit. Default: 3
|
|
first_block (bool): Whether it is the first ShuffleUnit of a
|
|
sequential ShuffleUnits. Default: True, which means not using the
|
|
grouped 1x1 convolution.
|
|
combine (str): The ways to combine the input and output
|
|
branches. Default: 'add'.
|
|
conv_cfg (dict, optional): Config dict for convolution layer.
|
|
Default: None, which means using conv2d.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Default: dict(type='BN').
|
|
act_cfg (dict): Config dict for activation layer.
|
|
Default: dict(type='ReLU').
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint
|
|
will save some memory while slowing down the training speed.
|
|
Default: False.
|
|
|
|
Returns:
|
|
Tensor: The output tensor.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
groups=3,
|
|
first_block=True,
|
|
combine='add',
|
|
conv_cfg=None,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU'),
|
|
with_cp=False):
|
|
super(ShuffleUnit, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.first_block = first_block
|
|
self.combine = combine
|
|
self.groups = groups
|
|
self.bottleneck_channels = self.out_channels // 4
|
|
self.with_cp = with_cp
|
|
|
|
if self.combine == 'add':
|
|
self.depthwise_stride = 1
|
|
self._combine_func = self._add
|
|
assert in_channels == out_channels, (
|
|
'in_channels must be equal to out_channels when combine '
|
|
'is add')
|
|
elif self.combine == 'concat':
|
|
self.depthwise_stride = 2
|
|
self._combine_func = self._concat
|
|
self.out_channels -= self.in_channels
|
|
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)
|
|
else:
|
|
raise ValueError(f'Cannot combine tensors with {self.combine}. '
|
|
'Only "add" and "concat" are supported')
|
|
|
|
self.first_1x1_groups = 1 if first_block else self.groups
|
|
self.g_conv_1x1_compress = ConvModule(
|
|
in_channels=self.in_channels,
|
|
out_channels=self.bottleneck_channels,
|
|
kernel_size=1,
|
|
groups=self.first_1x1_groups,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg)
|
|
|
|
self.depthwise_conv3x3_bn = ConvModule(
|
|
in_channels=self.bottleneck_channels,
|
|
out_channels=self.bottleneck_channels,
|
|
kernel_size=3,
|
|
stride=self.depthwise_stride,
|
|
padding=1,
|
|
groups=self.bottleneck_channels,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=None)
|
|
|
|
self.g_conv_1x1_expand = ConvModule(
|
|
in_channels=self.bottleneck_channels,
|
|
out_channels=self.out_channels,
|
|
kernel_size=1,
|
|
groups=self.groups,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=None)
|
|
|
|
self.act = build_activation_layer(act_cfg)
|
|
|
|
@staticmethod
|
|
def _add(x, out):
|
|
# residual connection
|
|
return x + out
|
|
|
|
@staticmethod
|
|
def _concat(x, out):
|
|
# concatenate along channel axis
|
|
return torch.cat((x, out), 1)
|
|
|
|
def forward(self, x):
|
|
|
|
def _inner_forward(x):
|
|
residual = x
|
|
|
|
out = self.g_conv_1x1_compress(x)
|
|
out = self.depthwise_conv3x3_bn(out)
|
|
|
|
if self.groups > 1:
|
|
out = channel_shuffle(out, self.groups)
|
|
|
|
out = self.g_conv_1x1_expand(out)
|
|
|
|
if self.combine == 'concat':
|
|
residual = self.avgpool(residual)
|
|
out = self.act(out)
|
|
out = self._combine_func(residual, out)
|
|
else:
|
|
out = self._combine_func(residual, out)
|
|
out = self.act(out)
|
|
return out
|
|
|
|
if self.with_cp and x.requires_grad:
|
|
out = cp.checkpoint(_inner_forward, x)
|
|
else:
|
|
out = _inner_forward(x)
|
|
|
|
return out
|
|
|
|
|
|
@MODELS.register_module()
|
|
class ShuffleNetV1(BaseBackbone):
|
|
"""ShuffleNetV1 backbone.
|
|
|
|
Args:
|
|
groups (int): The number of groups to be used in grouped 1x1
|
|
convolutions in each ShuffleUnit. Default: 3.
|
|
widen_factor (float): Width multiplier - adjusts the number
|
|
of channels in each layer by this amount. Default: 1.0.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
Default: (2, )
|
|
frozen_stages (int): Stages to be frozen (all param fixed).
|
|
Default: -1, which means not freezing any parameters.
|
|
conv_cfg (dict, optional): Config dict for convolution layer.
|
|
Default: None, which means using conv2d.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Default: dict(type='BN').
|
|
act_cfg (dict): Config dict for activation layer.
|
|
Default: dict(type='ReLU').
|
|
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
|
freeze running stats (mean and var). Note: Effect on Batch Norm
|
|
and its variants only. Default: False.
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
|
memory while slowing down the training speed. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
groups=3,
|
|
widen_factor=1.0,
|
|
out_indices=(2, ),
|
|
frozen_stages=-1,
|
|
conv_cfg=None,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU'),
|
|
norm_eval=False,
|
|
with_cp=False,
|
|
init_cfg=None):
|
|
super(ShuffleNetV1, self).__init__(init_cfg)
|
|
self.init_cfg = init_cfg
|
|
self.stage_blocks = [4, 8, 4]
|
|
self.groups = groups
|
|
|
|
for index in out_indices:
|
|
if index not in range(0, 3):
|
|
raise ValueError('the item in out_indices must in '
|
|
f'range(0, 3). But received {index}')
|
|
|
|
if frozen_stages not in range(-1, 3):
|
|
raise ValueError('frozen_stages must be in range(-1, 3). '
|
|
f'But received {frozen_stages}')
|
|
self.out_indices = out_indices
|
|
self.frozen_stages = frozen_stages
|
|
self.conv_cfg = conv_cfg
|
|
self.norm_cfg = norm_cfg
|
|
self.act_cfg = act_cfg
|
|
self.norm_eval = norm_eval
|
|
self.with_cp = with_cp
|
|
|
|
if groups == 1:
|
|
channels = (144, 288, 576)
|
|
elif groups == 2:
|
|
channels = (200, 400, 800)
|
|
elif groups == 3:
|
|
channels = (240, 480, 960)
|
|
elif groups == 4:
|
|
channels = (272, 544, 1088)
|
|
elif groups == 8:
|
|
channels = (384, 768, 1536)
|
|
else:
|
|
raise ValueError(f'{groups} groups is not supported for 1x1 '
|
|
'Grouped Convolutions')
|
|
|
|
channels = [make_divisible(ch * widen_factor, 8) for ch in channels]
|
|
|
|
self.in_channels = int(24 * widen_factor)
|
|
|
|
self.conv1 = ConvModule(
|
|
in_channels=3,
|
|
out_channels=self.in_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
|
self.layers = nn.ModuleList()
|
|
for i, num_blocks in enumerate(self.stage_blocks):
|
|
first_block = True if i == 0 else False
|
|
layer = self.make_layer(channels[i], num_blocks, first_block)
|
|
self.layers.append(layer)
|
|
|
|
def _freeze_stages(self):
|
|
if self.frozen_stages >= 0:
|
|
for param in self.conv1.parameters():
|
|
param.requires_grad = False
|
|
for i in range(self.frozen_stages):
|
|
layer = self.layers[i]
|
|
layer.eval()
|
|
for param in layer.parameters():
|
|
param.requires_grad = False
|
|
|
|
def init_weights(self):
|
|
super(ShuffleNetV1, self).init_weights()
|
|
|
|
if (isinstance(self.init_cfg, dict)
|
|
and self.init_cfg['type'] == 'Pretrained'):
|
|
# Suppress default init if use pretrained model.
|
|
return
|
|
|
|
for name, m in self.named_modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
if 'conv1' in name:
|
|
normal_init(m, mean=0, std=0.01)
|
|
else:
|
|
normal_init(m, mean=0, std=1.0 / m.weight.shape[1])
|
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
|
|
constant_init(m, val=1, bias=0.0001)
|
|
if isinstance(m, _BatchNorm):
|
|
if m.running_mean is not None:
|
|
nn.init.constant_(m.running_mean, 0)
|
|
|
|
def make_layer(self, out_channels, num_blocks, first_block=False):
|
|
"""Stack ShuffleUnit blocks to make a layer.
|
|
|
|
Args:
|
|
out_channels (int): out_channels of the block.
|
|
num_blocks (int): Number of blocks.
|
|
first_block (bool): Whether is the first ShuffleUnit of a
|
|
sequential ShuffleUnits. Default: False, which means using
|
|
the grouped 1x1 convolution.
|
|
"""
|
|
layers = []
|
|
for i in range(num_blocks):
|
|
first_block = first_block if i == 0 else False
|
|
combine_mode = 'concat' if i == 0 else 'add'
|
|
layers.append(
|
|
ShuffleUnit(
|
|
self.in_channels,
|
|
out_channels,
|
|
groups=self.groups,
|
|
first_block=first_block,
|
|
combine=combine_mode,
|
|
conv_cfg=self.conv_cfg,
|
|
norm_cfg=self.norm_cfg,
|
|
act_cfg=self.act_cfg,
|
|
with_cp=self.with_cp))
|
|
self.in_channels = out_channels
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.maxpool(x)
|
|
|
|
outs = []
|
|
for i, layer in enumerate(self.layers):
|
|
x = layer(x)
|
|
if i in self.out_indices:
|
|
outs.append(x)
|
|
|
|
return tuple(outs)
|
|
|
|
def train(self, mode=True):
|
|
super(ShuffleNetV1, self).train(mode)
|
|
self._freeze_stages()
|
|
if mode and self.norm_eval:
|
|
for m in self.modules():
|
|
if isinstance(m, _BatchNorm):
|
|
m.eval()
|