233 lines
8.1 KiB
Python
233 lines
8.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import random
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
from mmcv.runner import (DistSamplerSeedHook, Fp16OptimizerHook,
|
|
build_optimizer, build_runner, get_dist_info)
|
|
|
|
from mmcls.core import DistEvalHook, DistOptimizerHook, EvalHook
|
|
from mmcls.datasets import build_dataloader, build_dataset
|
|
from mmcls.utils import (get_root_logger, wrap_distributed_model,
|
|
wrap_non_distributed_model)
|
|
|
|
|
|
def init_random_seed(seed=None, device='cuda'):
|
|
"""Initialize random seed.
|
|
|
|
If the seed is not set, the seed will be automatically randomized,
|
|
and then broadcast to all processes to prevent some potential bugs.
|
|
|
|
Args:
|
|
seed (int, Optional): The seed. Default to None.
|
|
device (str): The device where the seed will be put on.
|
|
Default to 'cuda'.
|
|
|
|
Returns:
|
|
int: Seed to be used.
|
|
"""
|
|
if seed is not None:
|
|
return seed
|
|
|
|
# Make sure all ranks share the same random seed to prevent
|
|
# some potential bugs. Please refer to
|
|
# https://github.com/open-mmlab/mmdetection/issues/6339
|
|
rank, world_size = get_dist_info()
|
|
seed = np.random.randint(2**31)
|
|
if world_size == 1:
|
|
return seed
|
|
|
|
if rank == 0:
|
|
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
|
|
else:
|
|
random_num = torch.tensor(0, dtype=torch.int32, device=device)
|
|
dist.broadcast(random_num, src=0)
|
|
return random_num.item()
|
|
|
|
|
|
def set_random_seed(seed, deterministic=False):
|
|
"""Set random seed.
|
|
|
|
Args:
|
|
seed (int): Seed to be used.
|
|
deterministic (bool): Whether to set the deterministic option for
|
|
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
|
|
to True and `torch.backends.cudnn.benchmark` to False.
|
|
Default: False.
|
|
"""
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
if deterministic:
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
|
|
def train_model(model,
|
|
dataset,
|
|
cfg,
|
|
distributed=False,
|
|
validate=False,
|
|
timestamp=None,
|
|
device=None,
|
|
meta=None):
|
|
"""Train a model.
|
|
|
|
This method will build dataloaders, wrap the model and build a runner
|
|
according to the provided config.
|
|
|
|
Args:
|
|
model (:obj:`torch.nn.Module`): The model to be run.
|
|
dataset (:obj:`mmcls.datasets.BaseDataset` | List[BaseDataset]):
|
|
The dataset used to train the model. It can be a single dataset,
|
|
or a list of dataset with the same length as workflow.
|
|
cfg (:obj:`mmcv.utils.Config`): The configs of the experiment.
|
|
distributed (bool): Whether to train the model in a distributed
|
|
environment. Defaults to False.
|
|
validate (bool): Whether to do validation with
|
|
:obj:`mmcv.runner.EvalHook`. Defaults to False.
|
|
timestamp (str, optional): The timestamp string to auto generate the
|
|
name of log files. Defaults to None.
|
|
device (str, optional): TODO
|
|
meta (dict, optional): A dict records some import information such as
|
|
environment info and seed, which will be logged in logger hook.
|
|
Defaults to None.
|
|
"""
|
|
logger = get_root_logger()
|
|
|
|
# prepare data loaders
|
|
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
|
|
|
|
# The default loader config
|
|
loader_cfg = dict(
|
|
# cfg.gpus will be ignored if distributed
|
|
num_gpus=cfg.ipu_replicas if device == 'ipu' else len(cfg.gpu_ids),
|
|
dist=distributed,
|
|
round_up=True,
|
|
seed=cfg.get('seed'),
|
|
sampler_cfg=cfg.get('sampler', None),
|
|
)
|
|
# The overall dataloader settings
|
|
loader_cfg.update({
|
|
k: v
|
|
for k, v in cfg.data.items() if k not in [
|
|
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
|
|
'test_dataloader'
|
|
]
|
|
})
|
|
# The specific dataloader settings
|
|
train_loader_cfg = {**loader_cfg, **cfg.data.get('train_dataloader', {})}
|
|
|
|
data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]
|
|
|
|
# put model on gpus
|
|
if distributed:
|
|
find_unused_parameters = cfg.get('find_unused_parameters', False)
|
|
# Sets the `find_unused_parameters` parameter in
|
|
# torch.nn.parallel.DistributedDataParallel
|
|
model = wrap_distributed_model(
|
|
model,
|
|
cfg.device,
|
|
broadcast_buffers=False,
|
|
find_unused_parameters=find_unused_parameters)
|
|
else:
|
|
model = wrap_non_distributed_model(
|
|
model, cfg.device, device_ids=cfg.gpu_ids)
|
|
|
|
# build runner
|
|
optimizer = build_optimizer(model, cfg.optimizer)
|
|
|
|
if cfg.get('runner') is None:
|
|
cfg.runner = {
|
|
'type': 'EpochBasedRunner',
|
|
'max_epochs': cfg.total_epochs
|
|
}
|
|
warnings.warn(
|
|
'config is now expected to have a `runner` section, '
|
|
'please set `runner` in your config.', UserWarning)
|
|
|
|
if device == 'ipu':
|
|
if not cfg.runner['type'].startswith('IPU'):
|
|
cfg.runner['type'] = 'IPU' + cfg.runner['type']
|
|
if 'options_cfg' not in cfg.runner:
|
|
cfg.runner['options_cfg'] = {}
|
|
cfg.runner['options_cfg']['replicationFactor'] = cfg.ipu_replicas
|
|
cfg.runner['fp16_cfg'] = cfg.get('fp16', None)
|
|
|
|
runner = build_runner(
|
|
cfg.runner,
|
|
default_args=dict(
|
|
model=model,
|
|
batch_processor=None,
|
|
optimizer=optimizer,
|
|
work_dir=cfg.work_dir,
|
|
logger=logger,
|
|
meta=meta))
|
|
|
|
# an ugly walkaround to make the .log and .log.json filenames the same
|
|
runner.timestamp = timestamp
|
|
|
|
# fp16 setting
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
|
|
if fp16_cfg is None and device == 'npu':
|
|
fp16_cfg = {'loss_scale': 'dynamic'}
|
|
|
|
if fp16_cfg is not None:
|
|
if device == 'ipu':
|
|
from mmcv.device.ipu import IPUFp16OptimizerHook
|
|
optimizer_config = IPUFp16OptimizerHook(
|
|
**cfg.optimizer_config,
|
|
loss_scale=fp16_cfg['loss_scale'],
|
|
distributed=distributed)
|
|
else:
|
|
optimizer_config = Fp16OptimizerHook(
|
|
**cfg.optimizer_config,
|
|
loss_scale=fp16_cfg['loss_scale'],
|
|
distributed=distributed)
|
|
elif distributed and 'type' not in cfg.optimizer_config:
|
|
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
|
|
else:
|
|
optimizer_config = cfg.optimizer_config
|
|
|
|
# register hooks
|
|
runner.register_training_hooks(
|
|
cfg.lr_config,
|
|
optimizer_config,
|
|
cfg.checkpoint_config,
|
|
cfg.log_config,
|
|
cfg.get('momentum_config', None),
|
|
custom_hooks_config=cfg.get('custom_hooks', None))
|
|
if distributed and cfg.runner['type'] == 'EpochBasedRunner':
|
|
runner.register_hook(DistSamplerSeedHook())
|
|
|
|
# register eval hooks
|
|
if validate:
|
|
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
|
|
# The specific dataloader settings
|
|
val_loader_cfg = {
|
|
**loader_cfg,
|
|
'shuffle': False, # Not shuffle by default
|
|
'sampler_cfg': None, # Not use sampler by default
|
|
'drop_last': False, # Not drop last by default
|
|
**cfg.data.get('val_dataloader', {}),
|
|
}
|
|
val_dataloader = build_dataloader(val_dataset, **val_loader_cfg)
|
|
eval_cfg = cfg.get('evaluation', {})
|
|
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
|
|
eval_hook = DistEvalHook if distributed else EvalHook
|
|
# `EvalHook` needs to be executed after `IterTimerHook`.
|
|
# Otherwise, it will cause a bug if use `IterBasedRunner`.
|
|
# Refers to https://github.com/open-mmlab/mmcv/issues/1261
|
|
runner.register_hook(
|
|
eval_hook(val_dataloader, **eval_cfg), priority='LOW')
|
|
|
|
if cfg.resume_from:
|
|
runner.resume(cfg.resume_from)
|
|
elif cfg.load_from:
|
|
runner.load_checkpoint(cfg.load_from)
|
|
runner.run(data_loaders, cfg.workflow)
|