129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import warnings
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
from mmcv import DictAction
|
|
from mmcv.parallel import MMDataParallel
|
|
|
|
from mmcls.apis import single_gpu_test
|
|
from mmcls.datasets import build_dataloader, build_dataset
|
|
from mmcls.engine.export import ONNXRuntimeClassifier, TensorRTClassifier
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Test (and eval) an ONNX model using ONNXRuntime.')
|
|
parser.add_argument('config', help='model config file')
|
|
parser.add_argument('model', help='filename of the input ONNX model')
|
|
parser.add_argument(
|
|
'--backend',
|
|
help='Backend of the model.',
|
|
choices=['onnxruntime', 'tensorrt'])
|
|
parser.add_argument(
|
|
'--out', type=str, help='output result file in pickle format')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file.')
|
|
parser.add_argument(
|
|
'--metrics',
|
|
type=str,
|
|
nargs='+',
|
|
help='evaluation metrics, which depends on the dataset, e.g., '
|
|
'"accuracy", "precision", "recall", "f1_score", "support" for single '
|
|
'label dataset, and "mAP", "CP", "CR", "CF1", "OP", "OR", "OF1" for '
|
|
'multi-label dataset')
|
|
parser.add_argument(
|
|
'--metric-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
default={},
|
|
help='custom options for evaluation, the key-value pair in xxx=yyy '
|
|
'format will be parsed as a dict metric_options for dataset.evaluate()'
|
|
' function.')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# build dataset and dataloader
|
|
dataset = build_dataset(cfg.data.test)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=cfg.data.samples_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
shuffle=False,
|
|
round_up=False)
|
|
|
|
# build onnxruntime model and run inference.
|
|
if args.backend == 'onnxruntime':
|
|
model = ONNXRuntimeClassifier(
|
|
args.model, class_names=dataset.CLASSES, device_id=0)
|
|
elif args.backend == 'tensorrt':
|
|
model = TensorRTClassifier(
|
|
args.model, class_names=dataset.CLASSES, device_id=0)
|
|
else:
|
|
print('Unknown backend: {}.'.format(args.model))
|
|
exit(1)
|
|
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
model.CLASSES = dataset.CLASSES
|
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
|
|
|
|
if args.metrics:
|
|
results = dataset.evaluate(outputs, args.metrics, args.metric_options)
|
|
for k, v in results.items():
|
|
print(f'\n{k} : {v:.2f}')
|
|
else:
|
|
warnings.warn('Evaluation metrics are not specified.')
|
|
scores = np.vstack(outputs)
|
|
pred_score = np.max(scores, axis=1)
|
|
pred_label = np.argmax(scores, axis=1)
|
|
pred_class = [dataset.CLASSES[lb] for lb in pred_label]
|
|
results = {
|
|
'pred_score': pred_score,
|
|
'pred_label': pred_label,
|
|
'pred_class': pred_class
|
|
}
|
|
if not args.out:
|
|
print('\nthe predicted result for the first element is '
|
|
f'pred_score = {pred_score[0]:.2f}, '
|
|
f'pred_label = {pred_label[0]} '
|
|
f'and pred_class = {pred_class[0]}. '
|
|
'Specify --out to save all results to files.')
|
|
if args.out:
|
|
print(f'\nwriting results to {args.out}')
|
|
mmcv.dump(results, args.out)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
# Following strings of text style are from colorama package
|
|
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
|
|
red_text, blue_text = '\x1b[31m', '\x1b[34m'
|
|
white_background = '\x1b[107m'
|
|
|
|
msg = white_background + bright_style + red_text
|
|
msg += 'DeprecationWarning: This tool will be deprecated in future. '
|
|
msg += blue_text + 'Welcome to use the unified model deployment toolbox '
|
|
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
|
|
msg += reset_style
|
|
warnings.warn(msg)
|