152 lines
5.1 KiB
Python
152 lines
5.1 KiB
Python
import os.path as osp
|
|
import pickle
|
|
import shutil
|
|
import tempfile
|
|
import time
|
|
|
|
import mmcv
|
|
import torch
|
|
import torch.distributed as dist
|
|
from mmcv.runner import get_dist_info
|
|
|
|
|
|
def single_gpu_test(model, data_loader, show=False, out_dir=None):
|
|
model.eval()
|
|
results = []
|
|
dataset = data_loader.dataset
|
|
prog_bar = mmcv.ProgressBar(len(dataset))
|
|
for i, data in enumerate(data_loader):
|
|
with torch.no_grad():
|
|
result = model(return_loss=False, **data)
|
|
results.append(result)
|
|
|
|
if show or out_dir:
|
|
pass # TODO
|
|
|
|
batch_size = data['img'].size(0)
|
|
for _ in range(batch_size):
|
|
prog_bar.update()
|
|
return results
|
|
|
|
|
|
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False):
|
|
"""Test model with multiple gpus.
|
|
|
|
This method tests model with multiple gpus and collects the results
|
|
under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
|
|
it encodes results to gpu tensors and use gpu communication for results
|
|
collection. On cpu mode it saves the results on different gpus to 'tmpdir'
|
|
and collects them by the rank 0 worker.
|
|
|
|
Args:
|
|
model (nn.Module): Model to be tested.
|
|
data_loader (nn.Dataloader): Pytorch data loader.
|
|
tmpdir (str): Path of directory to save the temporary results from
|
|
different gpus under cpu mode.
|
|
gpu_collect (bool): Option to use either gpu or cpu to collect results.
|
|
|
|
Returns:
|
|
list: The prediction results.
|
|
"""
|
|
model.eval()
|
|
results = []
|
|
dataset = data_loader.dataset
|
|
rank, world_size = get_dist_info()
|
|
if rank == 0:
|
|
prog_bar = mmcv.ProgressBar(len(dataset))
|
|
time.sleep(2) # This line can prevent deadlock problem in some cases.
|
|
for i, data in enumerate(data_loader):
|
|
with torch.no_grad():
|
|
result = model(return_loss=False, **data)
|
|
if isinstance(result, list):
|
|
results.extend(result)
|
|
else:
|
|
results.append(result)
|
|
|
|
if rank == 0:
|
|
batch_size = data['img'].size(0)
|
|
for _ in range(batch_size * world_size):
|
|
prog_bar.update()
|
|
|
|
# collect results from all ranks
|
|
if gpu_collect:
|
|
results = collect_results_gpu(results, len(dataset))
|
|
else:
|
|
results = collect_results_cpu(results, len(dataset), tmpdir)
|
|
return results
|
|
|
|
|
|
def collect_results_cpu(result_part, size, tmpdir=None):
|
|
rank, world_size = get_dist_info()
|
|
# create a tmp dir if it is not specified
|
|
if tmpdir is None:
|
|
MAX_LEN = 512
|
|
# 32 is whitespace
|
|
dir_tensor = torch.full((MAX_LEN, ),
|
|
32,
|
|
dtype=torch.uint8,
|
|
device='cuda')
|
|
if rank == 0:
|
|
tmpdir = tempfile.mkdtemp()
|
|
tmpdir = torch.tensor(
|
|
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
|
|
dir_tensor[:len(tmpdir)] = tmpdir
|
|
dist.broadcast(dir_tensor, 0)
|
|
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
|
|
else:
|
|
mmcv.mkdir_or_exist(tmpdir)
|
|
# dump the part result to the dir
|
|
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
|
|
dist.barrier()
|
|
# collect all parts
|
|
if rank != 0:
|
|
return None
|
|
else:
|
|
# load results of all parts from tmp dir
|
|
part_list = []
|
|
for i in range(world_size):
|
|
part_file = osp.join(tmpdir, f'part_{i}.pkl')
|
|
part_list.append(mmcv.load(part_file))
|
|
# sort the results
|
|
ordered_results = []
|
|
for res in zip(*part_list):
|
|
ordered_results.extend(list(res))
|
|
# the dataloader may pad some samples
|
|
ordered_results = ordered_results[:size]
|
|
# remove tmp dir
|
|
shutil.rmtree(tmpdir)
|
|
return ordered_results
|
|
|
|
|
|
def collect_results_gpu(result_part, size):
|
|
rank, world_size = get_dist_info()
|
|
# dump result part to tensor with pickle
|
|
part_tensor = torch.tensor(
|
|
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
|
|
# gather all result part tensor shape
|
|
shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
|
|
shape_list = [shape_tensor.clone() for _ in range(world_size)]
|
|
dist.all_gather(shape_list, shape_tensor)
|
|
# padding result part tensor to max length
|
|
shape_max = torch.tensor(shape_list).max()
|
|
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
|
|
part_send[:shape_tensor[0]] = part_tensor
|
|
part_recv_list = [
|
|
part_tensor.new_zeros(shape_max) for _ in range(world_size)
|
|
]
|
|
# gather all result part
|
|
dist.all_gather(part_recv_list, part_send)
|
|
|
|
if rank == 0:
|
|
part_list = []
|
|
for recv, shape in zip(part_recv_list, shape_list):
|
|
part_list.append(
|
|
pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()))
|
|
# sort the results
|
|
ordered_results = []
|
|
for res in zip(*part_list):
|
|
ordered_results.extend(list(res))
|
|
# the dataloader may pad some samples
|
|
ordered_results = ordered_results[:size]
|
|
return ordered_results
|