mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
119 lines
4.3 KiB
Markdown
119 lines
4.3 KiB
Markdown
# Inference with existing models
|
||
|
||
This tutorial will show how to use the following APIs:
|
||
|
||
1. [**`list_models`**](mmpretrain.apis.list_models) & [**`get_model`**](mmpretrain.apis.get_model) :list models in MMPreTrain and get a specific model.
|
||
2. [**`ImageClassificationInferencer`**](mmpretrain.apis.ImageClassificationInferencer): inference on given images.
|
||
3. [**`FeatureExtractor`**](mmpretrain.apis.FeatureExtractor): extract features from the image files directly.
|
||
|
||
## List models and Get model
|
||
|
||
list all the models in MMPreTrain.
|
||
|
||
```
|
||
>>> from mmpretrain import list_models
|
||
>>> list_models()
|
||
['barlowtwins_resnet50_8xb256-coslr-300e_in1k',
|
||
'beit-base-p16_beit-in21k-pre_3rdparty_in1k',
|
||
.................]
|
||
```
|
||
|
||
`list_models` supports fuzzy matching, you can use **\*** to match any character.
|
||
|
||
```
|
||
>>> from mmpretrain import list_models
|
||
>>> list_models("*convnext-b*21k")
|
||
['convnext-base_3rdparty_in21k',
|
||
'convnext-base_in21k-pre-3rdparty_in1k-384px',
|
||
'convnext-base_in21k-pre_3rdparty_in1k']
|
||
```
|
||
|
||
you can use `get_model` get the model.
|
||
|
||
```
|
||
>>> from mmpretrain import get_model
|
||
|
||
# model without pre-trained weight
|
||
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k")
|
||
|
||
# model with default weight in MMPreTrain
|
||
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", pretrained=True)
|
||
|
||
# model with weight in local
|
||
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", pretrained="your_local_checkpoint_path")
|
||
|
||
# you can also do some modification, like modify the num_classes in head.
|
||
>>> model = get_model("convnext-base_in21k-pre_3rdparty_in1k", head=dict(num_classes=10))
|
||
|
||
# you can get model without neck, head, and output from stage 1, 2, 3 in backbone
|
||
>>> model_headless = get_model("resnet18_8xb32_in1k", head=None, neck=None, backbone=dict(out_indices=(1, 2, 3)))
|
||
```
|
||
|
||
Then you can do the forward:
|
||
|
||
```
|
||
>>> import torch
|
||
>>> from mmpretrain import get_model
|
||
>>> model = get_model('convnext-base_in21k-pre_3rdparty_in1k', pretrained=True)
|
||
>>> x = torch.rand((1, 3, 224, 224))
|
||
>>> y = model(x)
|
||
>>> print(type(y), y.shape)
|
||
<class 'torch.Tensor'> torch.Size([1, 1000])
|
||
```
|
||
|
||
## Inference on a given image
|
||
|
||
Here is an example of building the inferencer on a [given image](https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG) by using ImageNet-1k pre-trained checkpoint.
|
||
|
||
```python
|
||
>>> from mmpretrain import ImageClassificationInferencer
|
||
|
||
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
|
||
>>> results = inferencer('https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG')
|
||
>>> print(results[0]['pred_class'])
|
||
sea snake
|
||
```
|
||
|
||
`result` is a dictionary containing `pred_label`, `pred_score`, `pred_scores` and `pred_class`, the result is as follows:
|
||
|
||
```text
|
||
{"pred_label":65,"pred_score":0.6649366617202759,"pred_class":"sea snake", "pred_scores": [..., 0.6649366617202759, ...]}
|
||
```
|
||
|
||
If you want to use your own config and checkpoint:
|
||
|
||
```
|
||
>>> from mmpretrain import ImageClassificationInferencer
|
||
>>> inferencer = ImageClassificationInferencer(
|
||
model='configs/resnet/resnet50_8xb32_in1k.py',
|
||
pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
|
||
device='cuda')
|
||
>>> inferencer('https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG')
|
||
```
|
||
|
||
You can also inference multiple images by batch on CUDA:
|
||
|
||
```python
|
||
>>> from mmpretrain import ImageClassificationInferencer
|
||
|
||
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k', device='cuda')
|
||
>>> imgs = ['https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG'] * 5
|
||
>>> results = inferencer(imgs, batch_size=2)
|
||
>>> print(results[1]['pred_class'])
|
||
sea snake
|
||
```
|
||
|
||
## Extract Features From Image
|
||
|
||
Compared with `model.extract_feat`, `FeatureExtractor` is used to extract features from the image files directly, instead of a batch of tensors.
|
||
In a word, the input of `model.extract_feat` is `torch.Tensor`, the input of `FeatureExtractor` is images.
|
||
|
||
```
|
||
>>> from mmpretrain import FeatureExtractor, get_model
|
||
>>> model = get_model('resnet50_8xb32_in1k', backbone=dict(out_indices=(0, 1, 2, 3)))
|
||
>>> extractor = FeatureExtractor(model)
|
||
>>> features = extractor('https://github.com/open-mmlab/mmpretrain/raw/main/demo/demo.JPEG')[0]
|
||
>>> features[0].shape, features[1].shape, features[2].shape, features[3].shape
|
||
(torch.Size([256]), torch.Size([512]), torch.Size([1024]), torch.Size([2048]))
|
||
```
|