mmclassification/configs/efficientnet/efficientnet-b5_8xb32_in1k.py
Zhicheng Chen d56170a734
[Feature] Support EfficientNet (#649)
* add config for resnest test

* fix config

* add label smoothing

* add memcached

* minor fix

* fix bug

* fix config

* add config

* minor fix

* fix configs

* use EResize

* change interpolation

* add more configs

* add docsting

* add unittest

* remove unnecessary changes

* minor fix

* add more docstring

* fix linting

* add efficient backbone

* add config

* add Edge Residual

* fix bug

* remove unnecessary files

* refactor

* add resize in crop to ensure crop size is output size

* fix bug and add comments

* test

* fix

* add more configs

* add more configs

* add more configs

* fix bug

* add model zoo

* fix

* reorganize code

* add edge tpu

* add edge tpu converter

* rename

* update readme

* reorganize code and config

* Rename configs of EfficientNet, and add metafile & model_zoo

* Remove `backend='pillow'`

* Add comments about EfficientNet-EdgeTPU

* Rename the convert tool of EfficientNet.

* Refactor EfficientNet and update docstring.

* Update EfficientNet-EdgeTPU config

* Fix unit tests

Co-authored-by: lixinran <lixr423@outlook.com>
Co-authored-by: lixinran <lixinran@sensetime.com>
Co-authored-by: mzr1996 <mzr1996@163.com>
2022-01-25 12:14:17 +08:00

40 lines
1.2 KiB
Python

_base_ = [
'../_base_/models/efficientnet_b5.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py',
'../_base_/default_runtime.py',
]
# dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
size=456,
efficientnet_style=True,
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='CenterCrop',
crop_size=456,
efficientnet_style=True,
interpolation='bicubic'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))