mmclassification/docs/zh_CN/useful_tools/confusion_matrix.md
Choi Sau Deng b51d7d21de
[DOC] Add doc for usage of confusion matrix (#1513)
* add_doc_for_confusion_matrix

* add_doc_for_confusion_matrix_fix_mmcls

* add_doc_for_confusion_matrix_fix_shell

* add_doc_for_confusion_matrix_fix_shell

* fix

* update

---------

Co-authored-by: fangyixiao18 <fangyx18@hotmail.com>
2023-04-27 14:56:44 +08:00

2.6 KiB
Raw Blame History

混淆矩阵

MMPretrain 提供 tools/analysis_tools/confusion_matrix.py 工具来分析预测结果的混淆矩阵。关于混淆矩阵的介绍,可参考链接

命令行使用

命令行

python tools/analysis_tools/confusion_matrix.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT} \
    [--show] \
    [--show-path] \
    [--include-values] \
    [--cmap ${CMAP}] \
    [--cfg-options ${CFG-OPTIONS}]

所有参数的说明

  • config:模型配置文件的路径。
  • checkpoint:权重路径。
  • --show:是否展示混淆矩阵的 matplotlib 可视化结果,默认不展示。
  • --show-path:如果 show 为 True可视化结果的保存路径。
  • --include-values:是否在可视化结果上添加数值。
  • --cmap:可视化结果使用的颜色映射图,即 cmap,默认为 viridis
  • --cfg-options:对配置文件的修改,参考学习配置文件

使用示例

python tools/analysis_tools/confusion_matrix.py \
    configs/resnet/resnet50_8xb16_cifar10.py \
    https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \
    --show

输出图片

基础用法

>>> import torch
>>> from mmpretrain.evaluation import ConfusionMatrix
>>> y_pred = [0, 1, 1, 3]
>>> y_true = [0, 2, 1, 3]
>>> ConfusionMatrix.calculate(y_pred, y_true, num_classes=4)
tensor([[1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 0, 1]])
>>> # plot the confusion matrix
>>> import matplotlib.pyplot as plt
>>> y_score = torch.rand((1000, 10))
>>> y_true = torch.randint(10, (1000, ))
>>> matrix = ConfusionMatrix.calculate(y_score, y_true)
>>> ConfusionMatrix().plot(matrix)
>>> plt.show()

结合评估器使用

>>> import torch
>>> from mmpretrain.evaluation import ConfusionMatrix
>>> from mmpretrain.structures import DataSample
>>> from mmengine.evaluator import Evaluator
>>> data_samples = [
...     DataSample().set_gt_label(i%5).set_pred_score(torch.rand(5))
...     for i in range(1000)
... ]
>>> evaluator = Evaluator(metrics=ConfusionMatrix())
>>> evaluator.process(data_samples)
>>> evaluator.evaluate(1000)
{'confusion_matrix/result': tensor([[37, 37, 48, 43, 35],
         [35, 51, 32, 46, 36],
         [45, 28, 39, 42, 46],
         [42, 40, 40, 35, 43],
         [40, 39, 41, 37, 43]])}