mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine.model import BaseModule
|
|
|
|
from mmpretrain.evaluation import Accuracy
|
|
from mmpretrain.registry import MODELS
|
|
|
|
|
|
class Pooler(nn.Module):
|
|
|
|
def __init__(self, hidden_size):
|
|
super().__init__()
|
|
self.dense = nn.Linear(hidden_size, hidden_size)
|
|
self.activation = nn.Tanh()
|
|
|
|
def forward(self, hidden_states):
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
|
|
@MODELS.register_module()
|
|
class ITMHead(BaseModule):
|
|
"""Image-text matching head for multi-modal pre-trained task. Adapted by
|
|
BLIP, FLAVA.
|
|
|
|
Args:
|
|
hidden_size (int): Hidden channel size out input features.
|
|
with_pooler (bool): Whether a pooler is added. Defaults to True.
|
|
loss (dict): Config of global contrasive loss. Defaults to
|
|
``dict(type='GlobalContrasiveLoss')``.
|
|
cal_acc (bool): Whether to calculate accuracy during training.
|
|
If you use batch augmentations like Mixup and CutMix during
|
|
training, it is pointless to calculate accuracy.
|
|
Defaults to False.
|
|
init_cfg (dict, optional): the config to control the initialization.
|
|
Defaults to None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
hidden_size: int,
|
|
with_pooler: bool = True,
|
|
loss: dict = dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
cal_acc: bool = False,
|
|
init_cfg: Optional[dict] = None):
|
|
super(ITMHead, self).__init__(init_cfg=init_cfg)
|
|
self.hidden_size = hidden_size
|
|
|
|
if with_pooler:
|
|
self.pooler = Pooler(hidden_size=self.hidden_size)
|
|
else:
|
|
self.pooler = nn.Identity()
|
|
self.fc = nn.Linear(self.hidden_size, 2)
|
|
|
|
self.loss_module = MODELS.build(loss)
|
|
self.cal_acc = cal_acc
|
|
|
|
def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
|
|
"""The forward process."""
|
|
pre_logits = self.pooler(feats[-1])
|
|
itm_logits = self.fc(pre_logits)
|
|
return itm_logits
|
|
|
|
def loss(self, feats: Tuple[torch.Tensor], data_samples, **kwargs) -> dict:
|
|
"""Calculate losses from the classification score.
|
|
|
|
Args:
|
|
feats (tuple[Tensor]): The features extracted from the backbone.
|
|
Multiple stage inputs are acceptable but only the last stage
|
|
will be used to classify. The shape of every item should be
|
|
``(num_samples, num_classes)``.
|
|
data_samples (List[ClsDataSample]): The annotation data of
|
|
every samples.
|
|
**kwargs: Other keyword arguments to forward the loss module.
|
|
|
|
Returns:
|
|
dict[str, Tensor]: a dictionary of loss components
|
|
"""
|
|
|
|
# The part can be traced by torch.fx
|
|
itm_logits = self(feats)
|
|
|
|
# deal with query
|
|
if itm_logits.ndim == 3:
|
|
itm_logits = itm_logits.mean(dim=1)
|
|
|
|
# The part can not be traced by torch.fx
|
|
losses = self._get_loss(itm_logits, data_samples, **kwargs)
|
|
return losses
|
|
|
|
def _get_loss(self, itm_logits: torch.Tensor, data_samples, **kwargs):
|
|
"""Unpack data samples and compute loss."""
|
|
# Unpack data samples and pack targets
|
|
# use `itm_label` in here temporarily
|
|
target = torch.tensor([i.is_matched
|
|
for i in data_samples]).to(itm_logits.device)
|
|
|
|
# compute loss
|
|
losses = dict()
|
|
|
|
loss = self.loss_module(
|
|
itm_logits, target.long(), avg_factor=itm_logits.size(0), **kwargs)
|
|
losses['itm_loss'] = loss
|
|
|
|
# compute accuracy
|
|
if self.cal_acc:
|
|
# topk is meaningless for matching task
|
|
acc = Accuracy.calculate(itm_logits, target)
|
|
# acc is warpped with two lists of topk and thrs
|
|
# which are unnecessary here
|
|
losses.update({'itm_accuracy': acc[0][0]})
|
|
|
|
return losses
|