mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* remove basehead * add moco series * add byol simclr simsiam * add ut * update configs * add simsiam hook * add and refactor beit * update ut * add cae * update extract_feat * refactor cae * add mae * refactor data preprocessor * update heads * add maskfeat * add milan * add simmim * add mixmim * fix lint * fix ut * fix lint * add eva * add densecl * add barlowtwins * add swav * fix lint * update readtherdocs rst * update docs * update * Decrease UT memory usage * Fix docstring * update DALLEEncoder * Update model docs * refactor dalle encoder * update docstring * fix ut * fix config error * add val_cfg and test_cfg * refactor clip generator * fix lint * pass check * fix ut * add lars * update type of BEiT in configs * Use MMEngine style momentum in EMA. * apply mmpretrain solarize --------- Co-authored-by: mzr1996 <mzr1996@163.com>
62 lines
1.6 KiB
Python
62 lines
1.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmpretrain.models import SwAV
|
|
from mmpretrain.structures import DataSample
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_swav():
|
|
data_preprocessor = {
|
|
'mean': (123.675, 116.28, 103.53),
|
|
'std': (58.395, 57.12, 57.375),
|
|
'to_rgb': True
|
|
}
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
norm_cfg=dict(type='BN'),
|
|
zero_init_residual=True)
|
|
neck = dict(
|
|
type='SwAVNeck',
|
|
in_channels=512,
|
|
hid_channels=2,
|
|
out_channels=2,
|
|
norm_cfg=dict(type='BN1d'),
|
|
with_avg_pool=True)
|
|
head = dict(
|
|
type='SwAVHead',
|
|
loss=dict(
|
|
type='SwAVLoss',
|
|
feat_dim=2, # equal to neck['out_channels']
|
|
epsilon=0.05,
|
|
temperature=0.1,
|
|
num_crops=[2, 6]))
|
|
|
|
alg = SwAV(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
data_preprocessor=data_preprocessor)
|
|
|
|
fake_data = {
|
|
'inputs': [
|
|
torch.randn((2, 3, 224, 224)),
|
|
torch.randn((2, 3, 224, 224)),
|
|
torch.randn((2, 3, 96, 96)),
|
|
torch.randn((2, 3, 96, 96)),
|
|
torch.randn((2, 3, 96, 96)),
|
|
torch.randn((2, 3, 96, 96)),
|
|
torch.randn((2, 3, 96, 96)),
|
|
torch.randn((2, 3, 96, 96))
|
|
],
|
|
'data_samples': [DataSample() for _ in range(2)]
|
|
}
|
|
|
|
fake_inputs = alg.data_preprocessor(fake_data)
|
|
fake_outputs = alg(**fake_inputs, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|