98 lines
3.3 KiB
Python
98 lines
3.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from typing import List
|
|
|
|
from mmengine import get_file_backend, list_from_file
|
|
|
|
from mmpretrain.registry import DATASETS
|
|
from .base_dataset import BaseDataset
|
|
from .categories import OxfordIIITPet_CATEGORIES
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class OxfordIIITPet(BaseDataset):
|
|
"""The Oxford-IIIT Pets Dataset.
|
|
|
|
Support the `Oxford-IIIT Pets Dataset <https://www.robots.ox.ac.uk/~vgg/data/pets/>`_ Dataset.
|
|
After downloading and decompression, the dataset directory structure is as follows.
|
|
|
|
Oxford-IIIT_Pets dataset directory: ::
|
|
|
|
Oxford-IIIT_Pets
|
|
├── images
|
|
│ ├── Abyssinian_1.jpg
|
|
│ ├── Abyssinian_2.jpg
|
|
│ └── ...
|
|
├── annotations
|
|
│ ├── trainval.txt
|
|
│ ├── test.txt
|
|
│ ├── list.txt
|
|
│ └── ...
|
|
└── ....
|
|
|
|
Args:
|
|
data_root (str): The root directory for Oxford-IIIT Pets dataset.
|
|
split (str, optional): The dataset split, supports "trainval" and "test".
|
|
Default to "trainval".
|
|
|
|
Examples:
|
|
>>> from mmpretrain.datasets import OxfordIIITPet
|
|
>>> train_dataset = OxfordIIITPet(data_root='data/Oxford-IIIT_Pets', split='trainval')
|
|
>>> train_dataset
|
|
Dataset OxfordIIITPet
|
|
Number of samples: 3680
|
|
Number of categories: 37
|
|
Root of dataset: data/Oxford-IIIT_Pets
|
|
>>> test_dataset = OxfordIIITPet(data_root='data/Oxford-IIIT_Pets', split='test')
|
|
>>> test_dataset
|
|
Dataset OxfordIIITPet
|
|
Number of samples: 3669
|
|
Number of categories: 37
|
|
Root of dataset: data/Oxford-IIIT_Pets
|
|
""" # noqa: E501
|
|
|
|
METAINFO = {'classes': OxfordIIITPet_CATEGORIES}
|
|
|
|
def __init__(self, data_root: str, split: str = 'trainval', **kwargs):
|
|
|
|
splits = ['trainval', 'test']
|
|
assert split in splits, \
|
|
f"The split must be one of {splits}, but get '{split}'"
|
|
self.split = split
|
|
|
|
self.backend = get_file_backend(data_root, enable_singleton=True)
|
|
if split == 'trainval':
|
|
ann_file = self.backend.join_path('annotations', 'trainval.txt')
|
|
else:
|
|
ann_file = self.backend.join_path('annotations', 'test.txt')
|
|
|
|
data_prefix = 'images'
|
|
test_mode = split == 'test'
|
|
|
|
super(OxfordIIITPet, self).__init__(
|
|
ann_file=ann_file,
|
|
data_root=data_root,
|
|
data_prefix=data_prefix,
|
|
test_mode=test_mode,
|
|
**kwargs)
|
|
|
|
def load_data_list(self):
|
|
"""Load images and ground truth labels."""
|
|
|
|
pairs = list_from_file(self.ann_file)
|
|
data_list = []
|
|
for pair in pairs:
|
|
img_name, class_id, _, _ = pair.split()
|
|
img_name = f'{img_name}.jpg'
|
|
img_path = self.backend.join_path(self.img_prefix, img_name)
|
|
gt_label = int(class_id) - 1
|
|
info = dict(img_path=img_path, gt_label=gt_label)
|
|
data_list.append(info)
|
|
return data_list
|
|
|
|
def extra_repr(self) -> List[str]:
|
|
"""The extra repr information of the dataset."""
|
|
body = [
|
|
f'Root of dataset: \t{self.data_root}',
|
|
]
|
|
return body
|