mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
* Fix MobileNet V3 configs * Refactor to support more powerful feature extraction. * Add unit tests * Fix unit test * Imporve according to comments * Update checkpoints path * Fix unit tests * Add docstring of `simple_test` * Add docstring of `extract_feat` * Update model zoo
30 KiB
30 KiB
Model Zoo
ImageNet
ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.
Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|
VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 | config | model | log |
VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 | config | model | log |
VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 | config | model | log |
VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 | config | model | log |
VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 | config | model | log |
VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 | config | model | log |
VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 | config | model | log |
VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 | config | model | log |
RepVGG-A0* | 9.11(train) | 8.31 (deploy) | 1.52 (train) | 1.36 (deploy) | 72.41 | 90.50 | config (train) | config (deploy) | model | log |
RepVGG-A1* | 14.09 (train) | 12.79 (deploy) | 2.64 (train) | 2.37 (deploy) | 74.47 | 91.85 | config (train) | config (deploy) | model | log |
RepVGG-A2* | 28.21 (train) | 25.5 (deploy) | 5.7 (train) | 5.12 (deploy) | 76.48 | 93.01 | config (train) | config (deploy) | model | log |
RepVGG-B0* | 15.82 (train) | 14.34 (deploy) | 3.42 (train) | 3.06 (deploy) | 75.14 | 92.42 | config (train) | config (deploy) | model | log |
RepVGG-B1* | 57.42 (train) | 51.83 (deploy) | 13.16 (train) | 11.82 (deploy) | 78.37 | 94.11 | config (train) | config (deploy) | model | log |
RepVGG-B1g2* | 45.78 (train) | 41.36 (deploy) | 9.82 (train) | 8.82 (deploy) | 77.79 | 93.88 | config (train) | config (deploy) | model | log |
RepVGG-B1g4* | 39.97 (train) | 36.13 (deploy) | 8.15 (train) | 7.32 (deploy) | 77.58 | 93.84 | config (train) | config (deploy) | model | log |
RepVGG-B2* | 89.02 (train) | 80.32 (deploy) | 20.46 (train) | 18.39 (deploy) | 78.78 | 94.42 | config (train) | config (deploy) | model | log |
RepVGG-B2g4* | 61.76 (train) | 55.78 (deploy) | 12.63 (train) | 11.34 (deploy) | 79.38 | 94.68 | config (train) | config (deploy) | model | log |
RepVGG-B3* | 123.09 (train) | 110.96 (deploy) | 29.17 (train) | 26.22 (deploy) | 80.52 | 95.26 | config (train) | config (deploy) | model | log |
RepVGG-B3g4* | 83.83 (train) | 75.63 (deploy) | 17.9 (train) | 16.08 (deploy) | 80.22 | 95.10 | config (train) | config (deploy) | model | log |
RepVGG-D2se* | 133.33 (train) | 120.39 (deploy) | 36.56 (train) | 32.85 (deploy) | 81.81 | 95.94 | config (train) | config (deploy) | model | log |
ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 | config | model | log |
ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 | config | model | log |
ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | config | model | log |
ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | config | model | log |
ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | config | model | log |
Res2Net-50-14w-8s* | 25.06 | 4.22 | 78.14 | 93.85 | config | model | log |
Res2Net-50-26w-8s* | 48.40 | 8.39 | 79.20 | 94.36 | config | model | log |
Res2Net-101-26w-4s* | 45.21 | 8.12 | 79.19 | 94.44 | config | model | log |
ResNeSt-50* | 27.48 | 5.41 | 81.13 | 95.59 | config | model | log |
ResNeSt-101* | 48.28 | 10.27 | 82.32 | 96.24 | config | model | log |
ResNeSt-200* | 70.2 | 17.53 | 82.41 | 96.22 | config | model | log |
ResNeSt-269* | 110.93 | 22.58 | 82.70 | 96.28 | config | model | log |
ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 | config | model | log |
ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 | config | model | log |
ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 | config | model | log |
ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | config | model | log |
ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | config | model | log |
ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | config | model | log |
ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | config | model | log |
SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 | config | model | log |
SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 | config | model | log |
ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 | config | model | log |
ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 | config | model | log |
MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 | config | model | log |
ViT-B/16* | 86.86 | 33.03 | 85.43 | 97.77 | config | model | log |
ViT-B/32* | 88.3 | 8.56 | 84.01 | 97.08 | config | model | log |
ViT-L/16* | 304.72 | 116.68 | 85.63 | 97.63 | config | model | log |
Swin-Transformer tiny | 28.29 | 4.36 | 81.18 | 95.61 | config | model | log |
Swin-Transformer small | 49.61 | 8.52 | 83.02 | 96.29 | config | model | log |
Swin-Transformer base | 87.77 | 15.14 | 83.36 | 96.44 | config | model | log |
Transformer in Transformer small* | 23.76 | 3.36 | 81.52 | 95.73 | config | model | log |
T2T-ViT_t-14* | 21.47 | 4.34 | 81.69 | 95.85 | config | model | log |
T2T-ViT_t-19* | 39.08 | 7.80 | 82.43 | 96.08 | config | model | log |
T2T-ViT_t-24* | 64.00 | 12.69 | 82.55 | 96.06 | config | model | log |
Mixer-B/16* | 59.88 | 12.61 | 76.68 | 92.25 | config | model | log |
Mixer-L/16* | 208.2 | 44.57 | 72.34 | 88.02 | config | model | log |
DeiT-tiny* | 5.72 | 1.08 | 72.13 | 91.13 | config | model | log |
DeiT-tiny distilled* | 5.72 | 1.08 | 74.51 | 91.90 | config | model | log |
DeiT-small* | 22.05 | 4.24 | 79.83 | 94.95 | config | model | log |
DeiT-small distilled* | 22.05 | 4.24 | 81.17 | 95.40 | config | model | log |
DeiT-base* | 86.57 | 16.86 | 81.79 | 95.59 | config | model | log |
DeiT-base distilled* | 86.57 | 16.86 | 83.33 | 96.49 | config | model | log |
DeiT-base 384px* | 86.86 | 49.37 | 83.04 | 96.31 | config | model | log |
DeiT-base distilled 384px* | 86.86 | 49.37 | 85.55 | 97.35 | config | model | log |
Conformer-tiny-p16* | 23.52 | 4.90 | 81.31 | 95.60 | config | model | log |
Conformer-small-p32 | 38.85 | 7.09 | 81.96 | 96.02 | config | model | log |
Conformer-small-p16* | 37.67 | 10.31 | 83.32 | 96.46 | config | model | log |
Conformer-base-p16* | 83.29 | 22.89 | 83.82 | 96.59 | config | model | log |
Models with * are converted from other repos, others are trained by ourselves.
CIFAR10
Model | Params(M) | Flops(G) | Top-1 (%) | Config | Download |
---|---|---|---|---|---|
ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | config | |
ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | config | |
ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | config | |
ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | config | |
ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | config |