mmclassification/docs/en/model_zoo.md
Zhicheng Chen d56170a734
[Feature] Support EfficientNet (#649)
* add config for resnest test

* fix config

* add label smoothing

* add memcached

* minor fix

* fix bug

* fix config

* add config

* minor fix

* fix configs

* use EResize

* change interpolation

* add more configs

* add docsting

* add unittest

* remove unnecessary changes

* minor fix

* add more docstring

* fix linting

* add efficient backbone

* add config

* add Edge Residual

* fix bug

* remove unnecessary files

* refactor

* add resize in crop to ensure crop size is output size

* fix bug and add comments

* test

* fix

* add more configs

* add more configs

* add more configs

* fix bug

* add model zoo

* fix

* reorganize code

* add edge tpu

* add edge tpu converter

* rename

* update readme

* reorganize code and config

* Rename configs of EfficientNet, and add metafile & model_zoo

* Remove `backend='pillow'`

* Add comments about EfficientNet-EdgeTPU

* Rename the convert tool of EfficientNet.

* Refactor EfficientNet and update docstring.

* Update EfficientNet-EdgeTPU config

* Fix unit tests

Co-authored-by: lixinran <lixr423@outlook.com>
Co-authored-by: lixinran <lixinran@sensetime.com>
Co-authored-by: mzr1996 <mzr1996@163.com>
2022-01-25 12:14:17 +08:00

40 KiB
Raw Blame History

Model Zoo

ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.

Model Params(M) Flops(G) Top-1 (%) Top-5 (%) Config Download
VGG-11 132.86 7.63 68.75 88.87 config model | log
VGG-13 133.05 11.34 70.02 89.46 config model | log
VGG-16 138.36 15.5 71.62 90.49 config model | log
VGG-19 143.67 19.67 72.41 90.80 config model | log
VGG-11-BN 132.87 7.64 70.75 90.12 config model | log
VGG-13-BN 133.05 11.36 72.15 90.71 config model | log
VGG-16-BN 138.37 15.53 73.72 91.68 config model | log
VGG-19-BN 143.68 19.7 74.70 92.24 config model | log
RepVGG-A0* 9.11train) | 8.31 (deploy) 1.52 (train) | 1.36 (deploy) 72.41 90.50 config (train) | config (deploy) model
RepVGG-A1* 14.09 (train) | 12.79 (deploy) 2.64 (train) | 2.37 (deploy) 74.47 91.85 config (train) | config (deploy) model
RepVGG-A2* 28.21 (train) | 25.5 (deploy) 5.7 (train) | 5.12 (deploy) 76.48 93.01 config (train) | config (deploy) model
RepVGG-B0* 15.82 (train) | 14.34 (deploy) 3.42 (train) | 3.06 (deploy) 75.14 92.42 config (train) | config (deploy) model
RepVGG-B1* 57.42 (train) | 51.83 (deploy) 13.16 (train) | 11.82 (deploy) 78.37 94.11 config (train) | config (deploy) model
RepVGG-B1g2* 45.78 (train) | 41.36 (deploy) 9.82 (train) | 8.82 (deploy) 77.79 93.88 config (train) | config (deploy) model
RepVGG-B1g4* 39.97 (train) | 36.13 (deploy) 8.15 (train) | 7.32 (deploy) 77.58 93.84 config (train) | config (deploy) model
RepVGG-B2* 89.02 (train) | 80.32 (deploy) 20.46 (train) | 18.39 (deploy) 78.78 94.42 config (train) | config (deploy) model
RepVGG-B2g4* 61.76 (train) | 55.78 (deploy) 12.63 (train) | 11.34 (deploy) 79.38 94.68 config (train) | config (deploy) model
RepVGG-B3* 123.09 (train) | 110.96 (deploy) 29.17 (train) | 26.22 (deploy) 80.52 95.26 config (train) | config (deploy) model
RepVGG-B3g4* 83.83 (train) | 75.63 (deploy) 17.9 (train) | 16.08 (deploy) 80.22 95.10 config (train) | config (deploy) model
RepVGG-D2se* 133.33 (train) | 120.39 (deploy) 36.56 (train) | 32.85 (deploy) 81.81 95.94 config (train) | config (deploy) model
ResNet-18 11.69 1.82 70.07 89.44 config model | log
ResNet-34 21.8 3.68 73.85 91.53 config model | log
ResNet-50 (rsb-a1) 25.56 4.12 80.12 94.78 config model | log
ResNet-101 44.55 7.85 78.18 94.03 config model | log
ResNet-152 60.19 11.58 78.63 94.16 config model | log
Res2Net-50-14w-8s* 25.06 4.22 78.14 93.85 config model
Res2Net-50-26w-8s* 48.40 8.39 79.20 94.36 config model
Res2Net-101-26w-4s* 45.21 8.12 79.19 94.44 config model
ResNeSt-50* 27.48 5.41 81.13 95.59 config model
ResNeSt-101* 48.28 10.27 82.32 96.24 config model
ResNeSt-200* 70.2 17.53 82.41 96.22 config model
ResNeSt-269* 110.93 22.58 82.70 96.28 config model
ResNetV1D-50 25.58 4.36 77.54 93.57 config model | log
ResNetV1D-101 44.57 8.09 78.93 94.48 config model | log
ResNetV1D-152 60.21 11.82 79.41 94.7 config model | log
ResNeXt-32x4d-50 25.03 4.27 77.90 93.66 config model | log
ResNeXt-32x4d-101 44.18 8.03 78.71 94.12 config model | log
ResNeXt-32x8d-101 88.79 16.5 79.23 94.58 config model | log
ResNeXt-32x4d-152 59.95 11.8 78.93 94.41 config model | log
SE-ResNet-50 28.09 4.13 77.74 93.84 config model | log
SE-ResNet-101 49.33 7.86 78.26 94.07 config model | log
RegNetX-400MF 5.16 0.41 72.56 90.78 config model | log
RegNetX-800MF 7.26 0.81 74.76 92.32 config model | log
RegNetX-1.6GF 9.19 1.63 76.84 93.31 config model | log
RegNetX-3.2GF 15.3 3.21 78.09 94.08 config model | log
RegNetX-4.0GF 22.12 4.0 78.60 94.17 config model | log
RegNetX-6.4GF 26.21 6.51 79.38 94.65 config model | log
RegNetX-8.0GF 39.57 8.03 79.12 94.51 config model | log
RegNetX-12GF 46.11 12.15 79.67 95.03 config model | log
ShuffleNetV1 1.0x (group=3) 1.87 0.146 68.13 87.81 config model | log
ShuffleNetV2 1.0x 2.28 0.149 69.55 88.92 config model | log
MobileNet V2 3.5 0.319 71.86 90.42 config model | log
ViT-B/16* 86.86 33.03 85.43 97.77 config model
ViT-B/32* 88.3 8.56 84.01 97.08 config model
ViT-L/16* 304.72 116.68 85.63 97.63 config model
Swin-Transformer tiny 28.29 4.36 81.18 95.61 config model | log
Swin-Transformer small 49.61 8.52 83.02 96.29 config model | log
Swin-Transformer base 87.77 15.14 83.36 96.44 config model | log
Transformer in Transformer small* 23.76 3.36 81.52 95.73 config model
T2T-ViT_t-14 21.47 4.34 81.83 95.84 config model | log
T2T-ViT_t-19 39.08 7.80 82.63 96.18 config model | log
T2T-ViT_t-24 64.00 12.69 82.71 96.09 config model | log
Mixer-B/16* 59.88 12.61 76.68 92.25 config model
Mixer-L/16* 208.2 44.57 72.34 88.02 config model
DeiT-tiny* 5.72 1.08 72.13 91.13 config model
DeiT-tiny distilled* 5.72 1.08 74.51 91.90 config model
DeiT-small* 22.05 4.24 79.83 94.95 config model
DeiT-small distilled* 22.05 4.24 81.17 95.40 config model
DeiT-base* 86.57 16.86 81.79 95.59 config model
DeiT-base distilled* 86.57 16.86 83.33 96.49 config model
DeiT-base 384px* 86.86 49.37 83.04 96.31 config model
DeiT-base distilled 384px* 86.86 49.37 85.55 97.35 config model
Conformer-tiny-p16* 23.52 4.90 81.31 95.60 config model
Conformer-small-p32* 38.85 7.09 81.96 96.02 config model
Conformer-small-p16* 37.67 10.31 83.32 96.46 config model
Conformer-base-p16* 83.29 22.89 83.82 96.59 config model
EfficientNet-B0* 5.29 0.02 76.74 93.17 config model
EfficientNet-B0 (AA)* 5.29 0.02 77.26 93.41 config model
EfficientNet-B0 (AA + AdvProp)* 5.29 0.02 77.53 93.61 config model
EfficientNet-B1* 7.79 0.03 78.68 94.28 config model
EfficientNet-B1 (AA)* 7.79 0.03 79.20 94.42 config model
EfficientNet-B1 (AA + AdvProp)* 7.79 0.03 79.52 94.43 config model
EfficientNet-B2* 9.11 0.03 79.64 94.80 config model
EfficientNet-B2 (AA)* 9.11 0.03 80.21 94.96 config model
EfficientNet-B2 (AA + AdvProp)* 9.11 0.03 80.45 95.07 config model
EfficientNet-B3* 12.23 0.06 81.01 95.34 config model
EfficientNet-B3 (AA)* 12.23 0.06 81.58 95.67 config model
EfficientNet-B3 (AA + AdvProp)* 12.23 0.06 81.81 95.69 config model
EfficientNet-B4* 19.34 0.12 82.57 96.09 config model
EfficientNet-B4 (AA)* 19.34 0.12 82.95 96.26 config model
EfficientNet-B4 (AA + AdvProp)* 19.34 0.12 83.25 96.44 config model
EfficientNet-B5* 30.39 0.24 83.18 96.47 config model
EfficientNet-B5 (AA)* 30.39 0.24 83.82 96.76 config model
EfficientNet-B5 (AA + AdvProp)* 30.39 0.24 84.21 96.98 config model
EfficientNet-B6 (AA)* 43.04 0.41 84.05 96.82 config model
EfficientNet-B6 (AA + AdvProp)* 43.04 0.41 84.74 97.14 config model
EfficientNet-B7 (AA)* 66.35 0.72 84.38 96.88 config model
EfficientNet-B7 (AA + AdvProp)* 66.35 0.72 85.14 97.23 config model
EfficientNet-B8 (AA + AdvProp)* 87.41 1.09 85.38 97.28 config model

Models with * are converted from other repos, others are trained by ourselves.

CIFAR10

Model Params(M) Flops(G) Top-1 (%) Config Download
ResNet-18-b16x8 11.17 0.56 94.82 config
ResNet-34-b16x8 21.28 1.16 95.34 config
ResNet-50-b16x8 23.52 1.31 95.55 config
ResNet-101-b16x8 42.51 2.52 95.58 config
ResNet-152-b16x8 58.16 3.74 95.76 config